
WORD2VEC HYPERPARAMETERS TUNING FOR

EFFICIENT DEEP NEURAL NETWORK

CLASSIFICATION

UNIVERSITI KEBANGSAAN MALAYSIA

TASNEEM GAMAL ABDELLAH MOHAMMED ALY

Pus
at

Sum
be

r

FTSM

PENGGUNAAN HYPERPARAMETER WORD2VEC UNTUK KLASIFIKASI

RANGKAIAN NEURAL YANG BERKESAN

2021

TASNEEM GAMAL ABDELLAH MOHAMMED ALY

PROJECT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE (ARTIFICIAL

INTELLIGENCE)

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

Pus
at

Sum
be

r

FTSM

PENGGUNAAN HYPERPARAMETER WORD2VEC UNTUK KLASIFIKASI

RANGKAIAN NEURAL YANG BERKESAN

2021

TASNEEM GAMAL ABDELLAH MOHAMMED ALY

PROJEK YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN

DARIPADA SYARAT MEMPEROLEH UNTUK IJAZAH SARJANA SAINS

KOMPUTER (KECERDASAN BUATAN)

FAKULTI TEKNOLOGI SAINS DAN SAINS MAKLUMAT

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

Pus
at

Sum
be

r

FTSM

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries, which have been duly acknowledged.

05 October 2021 TASNEEM GAMAL ABDELLAH MOHAMMED ALY

P106220

Pus
at

Sum
be

r

FTSM

ACKNOWLEDGEMENT

First and foremost, praise be to Almighty Allah for all His blessings for giving me

patience and good health throughout the duration of this master research.

It is my pleasure to express my sincere gratitude and deepest thanks to my

supervisor Prof. Dr Nazlia Omar for her encouragement, endless support, and

guidance provided during my study at UKM. Her valuable discussions, comments,

and suggestions have greatly improved the content and the presentation of this thesis.

Moreover, I am grateful to all the UKM staff and works,

I would like to thank all postgraduate students of UKM for their help,

friendship, and creating a pleasant working environment throughout my years in

UKM.

Last but not least, To my dearest family, my beloved Friends.

Pus
at

Sum
be

r

FTSM

ABSTRACT

Word embedding is an emerging topic in recent years. The application of deep

learning in word embedding is expanding and being used by top corporations like

Google and Facebook in various applications such as search and recommendation

engines. Some several techniques and libraries have been published like Word2Vec,

FastText and GloVe. Word embedding usually defines the word by its accompanying

words. Researchers often choose the default hyperparameters mentioned in the

original paper for word embedding by Mikolov, such as Word2Vec. The default

hyperparameters have different effects on different downstream tasks. One simply

cannot use the same hyperparameters for word embedding for downstream

classification tasks and semantic analogy downstream tasks. The default and

recommended hyperparameters work the best with specific downstream tasks of

analogy and semantic meaning. Complex downstream tasks such as classification

might require different hyperparameters. This research aims to study hyperparameters'

impact on the downstream task of classification. This will help the researchers to

identify the combination of the word embedding hyperparameters that will fit their

downstream tasks. In this research, different deep neural network (DNN) classifiers

were used for the downstream classification tasks such as Recurrent Neural Network,

Convolution Neural Network and Long Short-Term Memory Neural Network. The

DNN networks were fed by different word embedding vector spaces trained using

different hyperparameters. The results show that by navigating the hyperparameters

space, the downstream task of classification accuracy can increase by 4.8%. The

results also show that LSTM networks are more resilient to changes in the

hyperparameters. However, CNN with a specific combination of word embedding

hyperparameters can achieve the highest accuracy in the classification downstream

task.

Pus
at

Sum
be

r

FTSM

ABSTRAK

Penyisipan perkataan adalah topik yang muncul dalam beberapa tahun terakhir.

Penerapan pembelajaran mendalam dalam penyisipan kata semakin berkembang dan

digunakan oleh syarikat teratas seperti Google dan Facebook dalam berbagai aplikasi

seperti mesin pencari dan cadangan. Beberapa teknik dan perpustakaan telah

diterbitkan, seperti Word2Vec, FastText dan GloVe. Penyisipan kata biasanya

mentakrifkan kata dengan kata-kata yang berhampiran. Penyelidik sering memilih

hiperparameter lalai yang disebut dalam kertas asal oleh Mikolov untuk penyisipan

kata seperti Word2Vec. Hiperparameter lalai mempunyai kesan yang berbeza pada

tugas hiliran yang berbeza. Penyelidik tidak boleh menggunakan hiperparameter yang

sama untuk penyisipan kata untuk klasifikasi tugas hilir dan untuk tugas hilir analogi

semantik. Hiperparameter lalai dan yang disyorkan berfungsi paling baik dengan tugas

hilir tertentu analogi dan makna semantik. Tugas hiliran yang kompleks seperti

klasifikasi mungkin memerlukan hiperparameter yang berbeza. Penyelidikan ini

bertujuan untuk mengkaji kesan hiperparameter terhadap tugas klasifikasi hiliran. Ini

akan membantu para penyelidik untuk mengenal pasti kombinasi perkataan

penyisipan hiperparameter yang sesuai dengan tugas hiliran mereka. Dalam

penyelidikan ini pengkelasan Rangkaian Neural Mendalam (RNM) yang berbeza

digunakan untuk tugas klasifikasi hilir seperti Rangkaian Neural Berulang (RNB),

Rangkaian Neural Konvolusi (RNK) dan Rangkaian Neural Memori Jangka Panjang

(RNMJP). Rangkaian JNJ diberi input dengan ruang vektor penyisipan kata yang

terlatih menggunakan hiperparameter yang berbeza. Hasilnya menunjukkan dengan

menavigasi ruang hiperparameter, tugas hiliran ketepatan klasifikasi meningkat

sebanyak 4.8%. Hasilnya juga menunjukkan bahawa rangkaian RNMJP lebih tahan

terhadap perubahan hiperparameter. Walau bagaimanapun, CNN dengan kombinasi

khusus hyperparameter penyisipan kata dapat mencapai ketepatan tertinggi dalam

tugas hiliran klasifikasi.

Pus
at

Sum
be

r

FTSM

TABLE OF CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF ILLUSTRATIONS xi

LIST OF ABBREVIATIONS xii

CHAPTER I INTRODUCTION

1.1 Background 1

1.1 Problem Statement 1

1.2 Research Objectives 2

1.3 Research Scope 3

1.4 Significance Of Project 3

1.5 Report Overview 4

1.6 Summary 4

CHAPTER II LITERATURE REVIEW

2.1 Introduction 5

1.2 Word Embedding 5

1.2.1 One-Hot Representation 6

1.2.2 Distributed Representation 6

1.3 Word2Vec 8

2.1.1 Word2Vec Limitations 9

1.3.1 Comparison between TF_IDF and Word2Vec 9

2.2 Different Techniques For Word Embedding 10

2.3 Neural Networks 12

2.3.1 Recurrent Neural Network 12

2.3.2 Convolutional Neural Network 12

2.3.3 Long Short-Term Memory 13

2.4 Related Work 13

Pus
at

Sum
be

r

FTSM

2.4.1 Tuning Word2Vec for Large Scale

Recommendation Systems 15

2.4.2 Word2Vec Applied to Recommendation:

Hyperparameters Matter 16

2.4.3 Word2Vec: Optimal Hyper-Parameters and Their

Impact on NLP Downstream Tasks 16

2.4.4 Learning Quality Improved Word Embedding

with Assessment of Hyperparameters 16

2.5 Summary 18

CHAPTER III RESEARCH METHODOLOGY

3.1 Introduction 19

3.2 Research design 19

3.3 Dataset 20

3.4 Pre-processing 22

3.4.1 Data Loading 22

3.4.2 Data Selection 22

3.4.3 Ranking Buckets 24

3.4.4 Data Concatenation 24

3.4.5 Text Cleaning 25

3.4.6 Data Classification Preparation 25

3.5 AWS cloud environment experimental settings 26

3.5.1 What is AWS Cloud Environment? 26

3.5.2 AWS S3 Bucket 26

3.5.3 AWS SageMaker 27

3.5.4 AWS Glue 27

3.5.5 AWS Athena 28

3.6 The Hyperparameter Tuning of Word2Vec 28

3.6.1 Implementation Example of Word2Vec 30

3.6.2 Continuous Bag-Of-Words Vs Skip-Gram 30

3.6.3 Word2Vec Similarity Feature 31

3.6.4 Word Embedding Visualization 32

3.6.5 Word2Vec Hyperparameter 32

3.7 Classification 37

3.7.1 Recurrent Neural Network parameters and layers 37

3.7.2 Convolutional Neural Network parameters and

layers 40

3.7.3 Long Short Term Memory parameters and layers 43

3.8 Evaluation 46

3.8.1 Accuracy 46

3.8.2 F1 Score 46

3.8.3 Precision 47

Pus
at

Sum
be

r

FTSM

3.8.4 Recall 47

3.9 Summary 47

CHAPTER II EXPERIMENTAL RESULTS

4.1 Introduction 49

4.2 Experiment Setting 49

4.2.1 Random Generation of Hyperparameters 50

4.2.2 Experiment AWS architecture 51

4.3 Word2Vec results 53

4.3.1 DNN Performance and Hyperparameters

Variation 54

4.3.2 Best Hyperparameters Combinations 55

4.3.3 Worst Hyperparameters Combinations 56

4.4 Dimension Size And Avg F1 Score 58

4.5 CBOW Vs Skip-Gram Average F1 Score 58

4.6 Summary 59

CHAPTER IV CONCLUSION AND FUTURE WORK

5.1 Contribution of the Study 60

5.2 Objectives Achievement 60

5.3 Limitations 60

5.4 Future Work 61

5.5 Conclusion 61

REFERENCES 62

 Pus
at

Sum
be

r

FTSM

LIST OF TABLES

Table 2.1 Summary of previous related work 17

Table 3.1 Dataset selected columns explanation 23

Table 3.2 An example of the dataset columns 23

Table 3.3 An example of the dataset after concatenated 24

Table 3.4 Statistic of the dataset 26

Table 3.5 Accuracy metrics 46

Table 4.1 Programming package 50

Table 4.2 Experimental setting 50

Table 4.3 Random range value of the hyperparameters 51

Table 4.4 F1 score value (min, max, average, and median) for

(RNN, CNN, LSTM) 54

Table 4.5 The best performer combinations of Gensim Word2Vec

hyperparameters 57

Table 4.6 The worst performer combinations of Gensim Word2Vec

hyperparameters 57

Table No. Page

Pus
at

Sum
be

r

FTSM

LIST OF ILLUSTRATIONS

Figure No. Page

Figure 2.1 One-Hot Representation of the word SAT in the small

given text. 6

Figure 2.2 Distributed representation of the word 'SAT' 8

Figure 3.1 Amazon Customer Reviews dataset sample 23

Figure 3.2 An Example of a customer review after text cleaning 25

Figure 3.3 Neural Network represents Word2Vec Neural Network 29

Figure 3.4 CBOW vs Skip-Ngram 31

Figure 3.5 TensorFlow data visualization of word embedding 32

Figure 3.6 Illustrates the window size of Word2Vec 34

Figure 3.7 Simple RNN module summary 38

Figure 3.8 Simple RNN module architecture 39

Figure 3.9 Simple CNN module summary 41

Figure 3.10 Simple CNN module architecture 42

Figure 3.11 LSTM module summary 44

Figure 3.12 LSTM module architecture 45

Figure 4.1 AWS end-to-end system architecture 53

Figure 4.2 Visual representation of F1 score value (min, max,

average and median) for (RNN, CNN, LSTM) 54

Figure 4.3 F1 score variations for RNN, CNN and LSTM for

different combinations of Word2Vec hyperparameters 55

Figure 4.4 Dimension size impact on the overall average F1 score 58

Pus
at

Sum
be

r

FTSM

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Service

BERT Bidirectional Encoder Representations From Transformers

RoBERTa Optimized BERT Pre-training Approach

CBoW Continuous Bag Of Word

CNN Convolutional Neural Network

DNN Deep Neural Networks

GloVe Global Vectors For Word Representation

IoT Internet Of Things

LSTM Long Short Term Memory

NLP Natural Language Processing

RNN Recurrent Neural Network

SA Sentiment Analysis

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

UKM Universiti Kebangsaan Malaysia

URL Uniform Resource Locator

LDA Latent Dirichlet Allocation

IMDb Internet Movie Database

Pus
at

Sum
be

r

FTSM

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Neural information retrieval is extensively being used in web search engines and

social media data processing. Its accuracy degradation occurs due to the nature of

using unsupervised machine learning techniques in processing its unstructured corpus.

Sensitive scientific studies limit neural information retrieval applications due to the

degradation of its accuracy. Search engines and social media frameworks

recommendation systems are examples of a successful approximation of neural

information retrieval.

Word Embedding is a dense representation of words in a low dimensional

vector space. As a concept, it can hold the same meaning as word vectors or

distributed word representation. Word embedding is a mathematical representation of

words into numbers and vectors that can be processed in several vector spaces.

Processing text by neural network requires a form of numerical transformation of text,

and in this case, it will be numerical vectors. Works by (Mikolov et al. 2013d, 2013a,

2013b) discussed and presented promising solutions to enable the machine to learn

high quality distributed vector representations to capture syntactic and semantic

relations among words in the corpus.

1.1 PROBLEM STATEMENT

Word embedding hyperparameters are often taken with fixated values from the

literature. The hyperparameters values mention in the literature by (Mikolov et al.

2013c) are usually designed for a specific downstream task such as semantic

analogies. Understanding Word2Vec fully might be overwhelming and time-

consuming, specifically for researchers who are focusing on other tasks such as

Pus
at

Sum
be

r

FTSM

2

combining word2vec with SVM or others. Accordingly, shed light on this problem

will allow the scientific community to have the means to understand how important

the hyperparameters tuning task is for the downstream tasks.

Some researchers assume that the values of the same hyperparameters can be reused

for other downstream tasks such as classification. Former publications (Barkan &

Koenigstein 2016) and (Grbovic et al. 2016) that used Word2Vec rarely discussed the

values of the hyperparameters. This often led to a decrease in the accuracy presented

in the downstream task such as classification. This work demonstrates the accuracy

degradation when hyperparameters tuning for Word2Vec are ignored. The main

reason for the inaccuracy decline is the low quality of the word embeddings fed to the

classification network (Barkan & Koenigstein 2016; Grbovic et al. 2016). This work

will also demonstrate how the quality word embedding affects the overall accuracy of

the downstream task.

A high-quality word embedding can be used for downstream classification

tasks such as sentiment analysis. Generating high-quality word embeddings depends

on the quality of the input corpus and the hyperparameters of the model (Caselles-

Dupré et al. 2018). The definition of high-quality word embeddings varies between

different downstream tasks, which means that the high-quality word embeddings

designed to be used in the semantic analogy are different from the high-quality word

embeddings that are designed to be used in classification.

Analyzing different combinations of word embeddings hyperparameters and

their effect contribute towards the classification tasks. This can be measured by the

accuracy metric of the classification neural network. Thus, examining the impact of

the change of hyperparameters of the word embeddings on the classification tasks is

necessary.

1.2 RESEARCH OBJECTIVES

The objectives of this research can be summarised as follows:

Pus
at

Sum
be

r

FTSM

3

i. To find the best hyperparameters combination to generate high-quality word

embeddings on the classification task.

ii. To measure the quality of the generated word embeddings via classification

task performance using several types of Deep Neural Networks such as

Recurrent Neural Network, Convolutional Neural Network and Long-Term

Short Memory.

1.3 RESEARCH SCOPE

The hyperparameter tuning of Word2Vec will be the primary focus of this study. We

evaluate the impact of changing the combination values of Word2Vec

hyperparameters on the downstream task of classification by using different Deep

Neural Network classifiers of Recurrent Neural Network, Convolution Neural

Network and Long Short-Term Memory Neural Network. The main research scope is

to improve the accuracy of the classification downstream task by modifying

hyperparameters combinations. This research uses the Amazon Custom Reviews

dataset that contains textual data representing the customers' opinion, and it is a star

rating for various products that were sold on Amazon.com.

1.4 SIGNIFICANCE OF PROJECT

The results of this work can help researchers understand the customer product

experience and construct a high-quality understanding of the evaluation of the natural

language opinion and the variation in the perception of different products. This has

been significantly used for marketing research and promotional and target marketing

and addresses several problems such as bias in reviews and different opinions. The

study contributes directly to the empirical testing of different combinations of

Word2Vec hyperparameters and their impact on the classification tasks. Researchers

can replicate and carefully select the best hyperparameters combinations of Word2Vec

that suits their experimental design.

Pus
at

Sum
be

r

FTSM

4

1.5 REPORT OVERVIEW

The methodologies and their stages would be described in the following:

i. Chapter I: this introduces the research idea and describes the study's

background. Furthermore, the research gap is stated in the problem statement,

which focuses on the problem that will be solved as a result of this study's

contribution. Furthermore, the study's objectives and the research scope as

well.

ii. Chapter II investigates the literature review of the study in which word

embedding is being described. This chapter highlights the other techniques

used and comparison to Word2Vec proposed technique. Finally, a critical

analysis of the related work is being provided by this chapter.

iii. Chapter III illustrated the research methodology, which consists of the dataset

used in this research, pre-processing tasks for the dataset, AWS cloud

environment used for processing the data, proposed Word2Vec method has

been declared by explaining the baseline methods, hyperparameter,

classification and the evaluation.

iv. Chapter IV discusses the experimental results in further detail. After

identifying the random generation of the hyperparameters of the experiments,

this chapter displays the results of the model.

v. Chapter V summarises the research by providing a final summary that

summarises all the thesis. In addition, the contribution of the study, Research

limitation and Finally, the future works.

1.6 SUMMARY

This study examines the improvement in the accuracy of the classification

downstream task by modifying hyperparameters combinations Word2Vec for the

Amazon Custom Reviews dataset.

Pus
at

Sum
be

r

FTSM

CHAPTER II

 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter will describe different word embedding techniques. The primary

approach that this research is focusing on is Word2Vec. Then will discuss the details

of word embedding as a neural network and how it is used in different downstream

tasks. The chapter will also discuss word embedding techniques, compare them to

Word2Vec, and list word embedding usage. Lastly, a brief review of some related

works to hyperparameters tunning with Word2Vec for different downstream tasks is

also reviewed. This chapter is organized as follows: Section 2.2 introduces the

definition of word embedding and its representation. Then will discuss Word2Vec in

further detail. It begins with the definitions, limitations, and comparison Word2Vec

and TF-IDF, which can be seen in Section 2.3. In addition, Section 2.4 illustrates

different techniques of word embedding in more detail (like GloVe and FastText).

Finally, in Section 2.5, Related works to Word2Vec hyperparameter tunning applied

to a different downstream task or recommendation systems. Section 2.6 gives a

summary of this chapter.

1.2 WORD EMBEDDING

The basic concept of word embedding is to transform the word representation into

numerical values that can be processed and compared to the context and extract

semantic and analogies from the corpus. The following section will discuss two

different basic techniques that transform the corpus into numerical representations.

The techniques are One-Hot representation and distributed distribution.

Pus
at

Sum
be

r

FTSM

6

1.2.1 One-Hot Representation

The One-Hot representation is the simplest method of representing the word in the

corpus. For each unique word of the corpus, there is one vector that represents this

word. The vector is composed of two binary values [0,1]. Based on the order of the

corpus and the word position in the corpus, the relevant bit in the vector will be turned

into one. Furthermore, every other bit will be turned to zero. Figure 2.1 illustrates the

vector projection of the word representation in the sentence.

Figure 2.1 One-Hot Representation of the word SAT in the small given text.

1.2.2 Distributed Representation

The distributed representation of a word is a mathematical representation of the word

vector in the corpus. One-Hot representation does not contain valuable information

about the word except for its index, which might be considered arbitrary as it may or

may not be determined by the word's position in a particular context. However, the

distributed representation of the word contains different values for each word in the

corpus and its relation to other words in the corpus. The distributed representation can

be used mathematically to extract analogies and semantics of the word given its

context. Figure 2.2 illustrates the distributed representation of the word 'SAT'. The

Pus
at

Sum
be

r

FTSM

7

mathematical numbers in the vector are challenging to be interpreted by a human. The

vector space of all the distributed representations of the words in the corpus is

interrelated. Mathematical operations in the space vector result in different meanings

like semantic, interchangeability, relatedness, and analogies.

The advantage of distributed representation versus One-Hot representation is

the dimensionality and the learning of semantics of the words. The One-Hot

representation is very high in dimensionality as it explicitly maps every unique word

in the corpus. Perform operations like the co-occurrence matrix will be gigantic in the

case of a big corpus. However, the distributed representation will reduce the

dimensionality and decrease the computational expense of the processing matrix. It is

important to note that generating the vector space of distributed representation is

computationally expensive. However, once obtained, processing it will be

significantly fast even for online computation for production applications. The number

of dimensions of distributed representation can vary, but ideally, it is from one

hundred to three hundred dimensions. The meaning of a word in the distributed

representation is distributed over all the dimensions. For example, the vector ['SAT']

meaning is distributed over all other vectors of V['fluffy'], V['DOG'], V['ON'],

V['THE'] and V['MAT'] as shown in figure1.2. The simple mathematical approach

behind distributed representation is to obtain lower-dimensional space to represent the

meaning of all words in the text. Word embedding core is the distributed

representation. Pus
at

Sum
be

r

FTSM

8

Figure 2.2 Distributed representation of the word 'SAT'

1.3 WORD2VEC

Word2Vec is a neural network that acts as a word embedding algorithm. It turns the

corpus of text into vector space that can be processed mathematically. Google labs

developed Word2Vec by (Mikolov et al. 2013e) , and it is claimed to be used by

Google search engine, among other algorithms. Mikolov, Chen, et al. (2013) released

the code online, and the trained model of 1.6 billion words described as state-of-the-

art performance for measuring syntactic and semantic word similarity.

Since Word2Vec is a neural network, it goes with the exact mechanism of input,

output, and hidden layers. The layers in the neural network of Word2Vec are word

embedding. The weights of the neural network of Word2Vec are initialized to random

numbers. Then the network keeps adjusting the weights by going through sentence by

sentence (sentences that contain the designated word) until the weights are optimized

to represent this word in the corpus best. The embedding typically is the weight

vectors themselves, which often coincides with the activation pattern of the hidden

layer. The outstanding findings of Word2Vec are the resultant weights vectors in the

hidden layer. The resultant vector of different words can be mathematically calculated

against each other to answer different linguistics questions like similarity, relationship,

and semantic meaning. The most common example used to describe this is "king,

Pus
at

Sum
be

r

FTSM

9

man, queen, woman" vectors. If the corpus is big enough, the "king" and "man"

vectors should be close together.

Moreover, the vector of "woman" and "queen" should be close together. The

elegance of Word2Vec comes in the ability to decipher this equation mathematically

"Vector[king] + Vector[queen] - Vector[man]=?" the answer is a vector [woman]

explained (Mikolov et al. 2013d). The base and simple outcome are that Word2Vec

has successfully represented the words in any given corpus by a mathematical vector

which is the outcome of the hidden layers of the trained neural network. This vector

space can be used mathematically to extract meaning and quantify the relationship

between different entities in the given corpus.

When comparing different word embedding techniques such as Word2Vec,

Glove and FastText, Word2Vec seems to be the most researched. By searching for the

terms “word2vec NLP”, “glove NLP”, and “FastText NLP” in Google Scholar, the

number of publications was 26100, 22000 and 9060, respectively. Adding the word

NLP” to the word embedding techniques was important to get relevant results. Based

on these results, numerous studies have been published for word2vec in the NLP more

than other word embedding technique.

2.1.1 Word2Vec Limitations

Word2Vec works well with one single word. However, many entities are defined with

more than one word. There are several research articles and solutions that tried to

solve this problem with no outstanding results. The Facebook research group

published a research article about InferSent where they proposed sentence

representations successfully with high accuracy (Conneau et al. 2017). This concept

was represented earlier with a group of researchers in 2015 called Skip-Thoughts

(Kiros et al. 2015)

1.3.1 Comparison between TF_IDF and Word2Vec

There are many elementary approaches to solve multiword sentences or entities. The

mathematical average of two-word embedded vectors can result in decent

Pus
at

Sum
be

r

FTSM

10

representations of the multiword entity. Document classification can be done with TF-

IDF (Term Frequency-Inverse Document Frequency). Several libraries can deploy a

simple baseline. TF-IDF works with counting the frequency of a specific word in a

given document, adjusting the value to the inverse of counting the same word in all

documents. This method has been used for years, and it seems to be working well. TF-

IDF accuracy in document classification can be compared to Doc2Vec (Maslova &

Potapov 2017). Using TF-IDF, weight averaging can be used in document

classification.

Another example of the difference between word embedding and TF-IDF is

the complexity of the model. In the case of the classical baseline model of TF-IDF, it

is a basic counting and calculation which are easier to modify, debug and control.

However, for complicated models like Word2Vec and Doc2Vec, the debugging and

the modification is more complicated, and, in some cases, it is impossible to

understand the error source. Word embedding might not be the most suitable solution

for all problems. However, it opens other possibilities that were not achievable before.

Using TF-IDF is easier to run and understand however word embedding is much more

complicated than conventional methods.

Another limitation of Word2Vec is its trained model. It is complicated to

expand it by adding more text to the trained model. Till this moment, none of the

existing techniques enables those extensions. This means the model expansion is very

computationally expensive and must amend the new text to the original corpus and

retrain the model from scratch.

2.2 DIFFERENT TECHNIQUES FOR WORD EMBEDDING

Several other word embedding techniques can cover some of Word2Vec limitations.

Such as and not limited to GloVe and FastText. However, those techniques have their

limitations as well. In this section, some of those techniques are discussed, along with

a good comparison between techniques.

Pus
at

Sum
be

r

FTSM

11

GloVe: (Global Vectors for Word Representation (Pennington et al. 2014) is

an unsupervised learning technique for obtaining word embedding. Its implementation

is different from Word2Vec and FastText. GloVe needs to prepare the whole co-

occurrence matrix at once and load it in the memory, which might be very memory

expensive. In the case study of Wikipedia or Google News, GloVe requires very high

RAM specifications to pre-process the corpus and load the co-occurrence matrix to the

memory. Due to the computational cost, it is not efficient to be used with the big

corpus. However, it will perform very well with a smaller corpus (Pennington et al.

2014).

FastText is a word embedding algorithm that the Facebook AI research group

released in August 2016 (Bojanowski et al. 2017). The gensim API for FastText is

very similar to Word2Vec gensim API. The experience of running the code is very

similar. FastText is written in C++. It is available with Python API as well. By the end

of 2017, Gensim released a native Python library for FastText to enhance the

implementation experience of C++ core code. Against several claims, Facebook AI

research claims that FastText can be trained with one billion words in less than ten

minutes with a standard multicore CPU. The research was published in 2016 by

Joulin, Grave, Bojanowski and Mikolov (2016). The speed of FastText in the memory

was a difficult obstacle, and (Joulin et al. 2016) proposed a solution later in 2016 by

using product quantization to store word embedding in the memory, claiming (Joulin

et al. 2016) that it outperforms the state-of-art by a good margin.

FastText, in general, is much slower than Word2Vec, even if it is written in

C++. The main reason for the slowness of FastText is related to how it works. The

similarity in FastText goes deeper than Word2Vec. The similarity function in FastText

is calculated by measuring the similarity between the subwords. For example, the

word “superpower” will be divided to su + up + pe + er + rp + po + ow + we + er. The

algorithm calculates the similarity among all those subwords. This is the main reason

behind its slowness. This is proven to be beneficial since some chunks of words can

be more related to the whole word morphologically. So, if two words share many sub

words, they should be more similar than if the whole words are not. FastText (Joulin

et al. 2017) has much better results considering the morphology of the words. The

Pus
at

Sum
be

r

FTSM

12

interchangeability of the words has much more value than Word2Vec as there is a

tendency for interchangeable words to share sub words.

The slowness of FastText (Joulin et al. 2016) is one of the drawbacks of the

algorithm. As mentioned above, the slowness comes from the extra calculation of the

subwords. Nevertheless, it gives a FastText morphological edge against other word

embedding algorithms. However, the sub-word calculations impose a significant error

as it might consider the word "night" and "knight" similar, which is semantically

wrong. Another example is "can" as a container or "can" as a verb. Using the spaCy

library in Python can be beneficial to distinguish the difference in meaning. It is

important to note that even when the maximum length parameter is set to zero, which

means that there are no sub words taken into consideration, still FastText is much

slower than Word2Vec.

Word2Vec outputs a numerical vector that represents the word appearance

within a context. However, it never classifies the sequence of words together. For

example, how to calculate the similarity between two sequences of words "sentences".

The simplest method to do this is to average the vector representation of each word.

2.3 NEURAL NETWORKS

2.3.1 Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural networks where

connections between nodes form a directed graph along a temporal sequence. This

allows it to exhibit temporal dynamic behaviour. Derived from feedforward neural

networks, RNNs can use their internal state (memory) to process variable-length

sequences of inputs. This makes them applicable to tasks such as unsegmented,

connected handwriting recognition or speech recognition.

2.3.2 Convolutional Neural Network

 A Convolutional Neural Network is a deep learning network developed for image

classification and text classification (sentence prediction) (Zhang & Wallace 2015). It

Pus
at

Sum
be

r

FTSM

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Speech_recognition

13

consists of a series of convolutions and sub-sampling (pooling) operations to analyze

only relevant information (e.g. borders and shapes of an image) and simplify the

initial data. That will overcome overfitting data problems that could affect a multi-

layer perceptron (MLP) network.

2.3.3 Long Short-Term Memory

A Convolutional Neural Network is a deep learning network developed for image

classification and text classification (sentence prediction) (Zhang & Wallace 2015). It

consists of a series of convolutions and sub-sampling (pooling) operations to analyze

only relevant information (e.g. borders and shapes of an image) and simplify the

initial data. That will overcome overfitting data problems that could affect a multi-

layer perceptron (MLP) network.

Long Short-Term Memory (LSTM) networks were proposed by (Hochreiter &

Schmidhuber 1997) are suitable to classify serialized objects such as sarcasm

detection. LSTM is an extension for recurrent neural networks, which extends their

memory. So, it is suitable easier to remember past data in memory. LSTM is well-

suited to classify, process and predict time series and sequential text data. Many

applications that the LSTM is suitable for Text generation, language translation, and

handwriting recognition are the widespread application of LSTM. The LSTM repeat

module is more difficult in Representing. Instead of making a single layer of the

neural network, four layers communicate in a specific way. It has two states besides:

hidden state and cell state.

2.4 RELATED WORK

The literature has shown great interest in the task of Word2Vec hyperparameter

tunning. This section aims to discuss and presents the prior researchers' works. These

studies were performed in different ways by applying Word2Vec hyperparameter

tunning on some recommendation systems, other downstream tasks and in different

languages.

Pus
at

Sum
be

r

FTSM

14

The word embedding is designed to analyze the corpus of text and classify it

eliminates the need for users to remark anything. It is a kind of unsupervised machine

learning that learns from current words and sentences without requiring interpretation.

The specific abilities of word embedding are determined by how it is applied. Here are

a few illustrations of how Word embedding has been used to various problems.

• Automated text tagging: Nikfarjam et al. (2015) used word embedding to

extract drug response characteristics from a social media corpus, claiming an

accuracy of 82 %, which is an increase over the baseline assessed.

• Recommendation Engines: Ozsoy (2016) researched the architecture of a

recommendation system utilizing Word2Vec word embedding in the

Foursquare check-in dataset and found significant improvement for word

embedding recommendation engines.

• Machine translation: Mikolov, Le, et al. (2013)using two alternative

translations for the same content to train the word embedding algorithm.

Showed how monolingual data might be mapped to bilingual data. The

distributed representation can generate vector space similarities and

successfully translate them. Mikolov's experiment obtained an accuracy of

90% of precision for translation between English and Spanish. Chelba et al.

(2013) released a new one-billion-word data set that will be used to measure

statistical language modelling. This dataset has the potential to be

implemented for both translation and word embedding assessments.

• Question and answers: Even though there has been much study on automating

an AI agent to answer human queries, Weston et al. (2015) believe no

complete system can do it yet. They claimed that having an automated AI

question and answer system might be achieved by combining word embedding

with an improved memory network model.

• Sentiment analysis is an excellent illustration of just how Word2Vec can be

used. It is possible that categorizing user reviews will take a long time. In the

Pus
at

Sum
be

r

FTSM

15

classification of sentiment analysis, there are various supervised learning

approaches. Using Word2Vec, on the other hand, can be a more

straightforward method for sentiment analysis. The IMDB movie review

dataset was researched in 2015 by a Facebook AI research group led by Mesnil

et al. (2014). Several integrated machine learning techniques were used to

study the IMDB movie review dataset. In their study, they studied the NB-

SVM, RNN-LM, and sentence vector methods. They have made their code

public to make it simple to replicate their results and increase their

accountability.

2.4.1 Tuning Word2Vec for Large Scale Recommendation Systems

Chamberlain et al. (2020) study Word2Vec as an effective system mastering device

that emerged from Natural Language Processing (NLP) and is now carried out in more

than one domain, inclusive of recommender systems forecasting and community

analysis. As Word2Vec is frequently used off the shelf, the researchers studied

whether the default hyperparameters are appropriate for recommender systems. In this

work, the researchers first elucidate the significance of hyperparameter optimization

and display that unconstrained optimization yields a mean 221% development in hit

charge over the default parameters. However, unconstrained optimization results in

hyperparameter settings that can be very high priced and no longer viable for massive

scale advice tasks. The researchers display 138% common development in hit charge

with a runtime budget-restricted hyperparameter optimization.

Furthermore, to make hyperparameter optimization relevant for massive scale

advice troubles in which the goal dataset is simply too massive to look over, the

researchers look at generalizing hyperparameters settings from samples. They

displayed that using restricted hyperparameter optimization, the usage of handiest a

10% pattern of the records nonetheless yields a 91% common development in hit

charge over the default parameters whilst carried out to the whole datasets. Finally,

the researchers observed hyperparameters discovered using the technique of restricted

optimization on a pattern to the Who to Follow advice carrier at Twitter and are

capable of boom compliance with prices with the aid of using 15%.

Pus
at

Sum
be

r

FTSM

16

2.4.2 Word2Vec Applied to Recommendation: Hyperparameters Matter

Caselles-Dupré et al. (2018) studied the effect of Skip-gram with negative sampling.

This is a common hyperparameter used in Word2Vec to create a high-quality work

embedding and vector representation of a given corpus. Given that it is commonly

used, it is not precisely accurate to use the same tuned model for different tasks such

as classification, recommendation, sentiment analysis and others. The

hyperparameters are often tuned dependently based on the given dataset and the

downstream tasks. Results show that optimizing neglected hyperparameters, namely

negative sampling distribution, number of epochs, subsampling parameters and

window size, significantly improves performance on a recommendation task and can

increase it by order of magnitude. The outstanding finding of this research is that the

hyperparameters tuning functions in natural language processing tasks and

Recommendation tasks are noticeably different.

2.4.3 Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream

Tasks

 Adewumi et al. (2020) confirmed empirically that the combination of

hyperparameters is highly dependent on the downstream tasks. They have used

different combinations of hyperparameters to create a high-quality vector

representation that can be used to build a state-of-the-art downstream task such as

classifications. They have tested their hypotheses with intrinsic and extrinsic

(downstream) evaluations, including named entity recognition (NER) and sentiment

analysis (SA). Outstanding findings such as high analogy scores do not necessarily

correlate positively with F1 scores, and the same applies to focus on data alone.

Increasing vector dimension size after a point leads to poor quality or performance.

They also noted that the size of the corpora might be irrelevant, and it is more about

the content and the high-quality representation of the vector space.

2.4.4 Learning Quality Improved Word Embedding with Assessment of

Hyperparameters

Yildiz & Tezgider (2020) studied the hyperparameters tuning for Word2Vec to

generate high-quality word embedding and vector spaces. The research focused on the

Pus
at

Sum
be

r

FTSM

17

parameters of the minimum word count, vector size, window size, and the number of

iterations. They have also introduced two main methods: computationally more

efficient than grid search and random search. They used around 300 million words.

The downstream tasks were developed using deep learning classifiers. The task was to

classify documents into ten different classes. The classification task was used to

evaluate the quality of the generated word embedding and vector spaces. Their results

show a 9% increase in the overall classification accuracy, which inherently provides

undeniable proof that the parameters tuning can result in high-quality word

embeddings that can be translated and propagated to the accuracy of the downstream

tasks of deep neural networks classification tasks. Table 2.1 summarises all the studies

mentioned earlier.

Table 2.1 Summary of previous related work

Author Parameters Feature Dataset

Chamberlain et al.

(2020)

▪ Window size

▪ Embedding

dimension

▪ Negative sampling

▪ Negative samples

▪ Initial learning

rate

▪ Recommendation

task

▪ Twitter retweet

▪ Twitter follow

Yildiz & Tezgider

(2020)

▪ Window size

▪ The minimum

word count

▪ Vector size

▪ Iterations numbers

▪ Classification model ▪ 3 million Turkish texts

Adewumi et al.

(2020)

▪ Window size

▪ Dimension size

▪ Epochs

▪ Named entity

recognition

▪ Sentiment analysis

▪ Internet movie database

(IMDB) of movie reviews

Caselles-Dupré et

al. (2018)

▪ Window size

▪ Negative sampling

▪ Number of epochs

▪ Embedding size

▪ Learning rate

▪ Sub-sampling

parameter

▪ Recommendation

▪ Task

▪ Music datasets

▪ E-commerce dataset

▪ Click-stream dataset

The hyperparameters are often tuned dependently based on the given dataset

and the downstream tasks. Several studies proposed different values for

hyperparameter tunning for different downstream tasks applied on the dataset—most

of the studies proved to achieve a higher accuracy rate. For the hyperparameter used,

All of the studies have used the window size parameter ((Chamberlain et al. 2020);

(Yildiz & Tezgider 2020);(Adewumi et al. 2020);(Caselles-Dupré et al. 2018)). Two

Pus
at

Sum
be

r

FTSM

18

of the studies by ((Chamberlain et al. 2020)and (Caselles-Dupré et al. 2018)) have

used the Word2Vec hyperparameter tunning for recommendation tasks on different

datasets and achieved a higher accuracy on the recommendation. A deep learning

model was developed for the classification model to evaluate the quality of the word

embedding by(Yildiz & Tezgider 2020) A BiLSTM network was trained on the

IMDb dataset for sentiment analysis (Adewumi et al. (2020). (Chamberlain et al.

2020) have used a shallow network for the recommendation task on the Twitter

follows and Twitter Retweet dataset.

2.5 SUMMARY

The chapter reviews related past studies on word embedding and the relevant

techniques for word embeddings such as Word2Vec, GloVe and FastText. In addition,

analyze those selected related research work for word embedding and Word2Vec

technique applied by researchers on different classification tasks and other

downstream tasks. The analysis of these studies will introduce and clarify that using

Word2Vec hyperparameters tunning significantly impacts classification accuracy.

Pus
at

Sum
be

r

FTSM

CHAPTER III

RESEARCH METHODOLOGY

3.1 INTRODUCTION

This chapter introduces the methodology of Word2Vec hyperparameter tuning and

classification downstream tasks using several types of Deep Neural Networks such as

RNN, CNN, and LSTM. Furthermore, it presents the study's research design,

including information about the dataset and its pre-processing task. The

implementation of algorithms depends on the Python programming language using the

AWS platform. This chapter starts explaining the dataset going through the pre-

processing task and describes the evaluation metrics to assess the performance of the

algorithms. Finally, it explores the hyperparameter tunning in detail.

3.2 RESEARCH DESIGN

The methodology of this study consists of five phases. Phase one is the preparation of

the Amazon Custom Reviews dataset. This preparation involves the specific technique

that is used to extract and filter the data. Phase two is the data pre-processing. This

phase focuses on the data loading and the random selection of the subset of that data

that will be used in training. Phase three is the AWS cloud environment experimental

settings. Phase four is the hyperparameter tuning of Word2Vec in preparation for

phase five, the downstream classification task.

As mentioned before, the experiment objective is divided into two main

sections. First, to find the best hyperparameters to generate high-quality word

embeddings. Then the generated word embeddings are evaluated by testing its

accuracy through downstream tasks of classification using several types of deep

neural networks such as RNN, CNN, and LSTM. Comparison of the result of the word

embedding with the same dataset through more than one deep neural network can give

Pus
at

Sum
be

r

FTSM

20

a great insight on which of the neural network can achieve more accuracy rate with

hyperparameter tuning and which neural network is more resilient to the

hyperparameter tuning.

The first section aims to train the Word2Vec model to generate a high-quality

vector space. The experiment is designed to try hundreds of several combinations of

hyperparameters of Word2Vec to obtain the highest possible quality of vector space of

word embedding. The resultant vector space of word embedding will be used in the

second section of the experiment. It is the downstream task of classifying the Amazon

Custom Reviews into the predefined ranking of the reviews.

The second section is the classification task that will use different types of

Deep Neural Networks to find the highest possible accuracy in combination with

different word embeddings. The first layer in the Deep Neural Networks will be the

embedding layer. The resultant word embeddings from section one will be converted

to an embedding matrix that fits into the Keras embedding layer. This layer will be

defined as a non-trainable layer. Not letting Keras change the weights of the

embedding layer will measure the effectiveness of the quality of the generated layer

from section one.

3.3 DATASET

This research uses the Amazon Customer Reviews Dataset(“Amazon Customer

Reviews Dataset” n.d.) (a.k.a. Product Reviews). This data has been collected over

two decades since 1995. The data contains millions of Amazon customers that

provided hundreds of millions of reviews. The reviews contain the customer opinion

about their experience with the products and the purchase order through the

amazon.com website. The dataset of Amazon Customer Reviews has been used

several times in academic research , specifically in Natural Language processing by(

(Nandal et al. 2020);(Srujan et al. 2018); (Pankaj et al. 2019)). The field of

Information Retrieval and Machine learning has significantly used the dataset.

• The dataset has helped several researchers to understand the customer product

experience and construct a high-quality understanding of the evaluation of the

Pus
at

Sum
be

r

FTSM

21

natural language opinion and the variation in the perception of different

products across various geographical regions. This has been significantly used

for marketing research and promotional and target marketing and addresses

several problems such as bias in reviews and different ways of expressing the

opinion. If you use the AWS Command Line Interface, you can list data in the

Bucket with the "ls" command: aws s3 ls s3://amazon-reviews-pds/tsv/

 The following section will be list in detail the dataset description:

• The link for the dataset “Amazon Customer Reviews Dataset” , 2015,

https://s3.amazonaws.com/amazon-reviews-pds/readme.html

• The dataset is composed of over 130 million reviews. This research used only

100K reviews.

• The data is stored on Amazon Web Services S3 bucket US East Region.

• The data is available in TSV format.

• If you use the AWS Command Line Interface, you can list data in the Bucket

with the "ls" command: aws s3 ls s3://amazon-reviews-pds/tsv/

• Each individual customer review is presented in one line.

• The dataset of Amazon Customer Reviews contains the review text itself. It

also contains the metadata of the data. The metadata describes the data in the

customer review. The metadata is composed of the below significant sections

• The reviews are collected from the Amazon.com website associated with data

from 1995 to 2015. This dataset contains more than 130M customer reviews. It

represented the human expression of the customer experience and how people

evaluate and express their opinions on the products.

• The dataset of Amazon Customer Reviews contains product reviews in

multiple languages. This can be used in multilingual research to understand

how people evaluate and express their opinions about the same product in

different languages. The reviews collected in different languages from five

countries are counted as more than 200K reviews. This research only focuses

Pus
at

Sum
be

r

FTSM

22

on the English language due to the limitation of time and the computational

resources.

• Some of the reviews have been marked as non-compliant due to a violation of

Amazon policies. This dataset can detect biased reviews and possible

promotional reviews that aim to create a fake representation of actual

customers. This dataset was not used in our research as the focus was only on

generating a high-quality word embedding representation by tuning different

hyperparameters of Word2Vec.

3.4 PRE-PROCESSING

In this stage, the data is prepared by first splitting the text when running on a set of

pre-processing algorithms to prepare it for the following stages. The pre-processing

tasks can be described as follows:

3.4.1 Data Loading

Data loading is the process of retrieving the data from the S3 Bucket and loading it

directly to Amazon Athena. After Creating the Athena environment on the AWS

account, run the below ETL job that will load the data from S3 Bucket.

3.4.2 Data Selection

The selection process was performed over AWS Athena. Random selection has been

performed to ensure no bias in data selection. Due to the limitation in the

computational expenses, 100K reviews are used with a maximum of 40 words per

review. Figure 3.1 show a sample of the dataset.

Pus
at

Sum
be

r

FTSM

23

Figure 3.1 Amazon Customer Reviews dataset sample

Then, the four-column that is relevant to our experiments are selected, which

are the review id, review headline, review body and the star rating. These columns and

their explanation are shown in Table 3.1. The four columns are selected from the

Amazon Customer Reviews dataset sample, as shown in Table 3.2.

Table 3.1 Dataset selected columns explanation

Data Column Explanation

Review_id The id of the review

Review_headline The title of the review

Review_body The review texts

Star_rating The 1–5-star rating of the review

Table 3.2 An example of the dataset columns

Review_id Star_rating Review_headline Review_body

R298788GS6I901 5 my daughter loved it

and i liked the price

and it came ...

my daughter loved it and i liked the

price and it came to me rather than

shopping with a ton of people around

me. Amazon is the Best way to shop!

R2SDXLTLF92O0H 5 Five Stars It was a birthday present for my

grandson and he LOVES IT!!

To be continued…

Pus
at

Sum
be

r

FTSM

24

…continuation

RNX4EXOBBPN5 1 DONT BUY THESE! Do not buy these! They break very

fast I spun then for 15 minutes and the

end flew off don't waste your money.

They are made from cheap plastic and

have cracks in them.

R1UE3RPRGCOLD 2 Two Stars Cards are not as big as pictured.

R1JS8G26X4RM2G 5 Five Stars Great gift!

3.4.3 Ranking Buckets

The customer rating comes with 5-star ranks. For simplicity, the five ranks are divided

into two ranks. The lower rank obtains a one and two-star ranking, and the higher rank

contains the three, four and five-star ranking. Python Jupyter NoteBook is used to

perform this process on AWS SageMaker.

3.4.4 Data Concatenation

The processed data has been concatenated to form a new comma-separated values

(CSV) file, which is a delimited text file that uses a comma to separate values. The

product review title and the review body have been concatenated to provide

comprehensive customer opinion data. The concatenated text has been merged with

the new ranking buckets to form a new dataset format of 100K review. An Example of

the dataset after concatenated is shown in Table 3.3.

Table 3.3 An example of the dataset after concatenated

star_rating Review_headline + Review_body

5 my daughter loved it and i liked the price and it came ... my daughter loved it and i liked

the price and it came to me rather than shopping with a ton of people around me.

Amazon is the Best way to shop!

5 Five Stars It was a birthday present for my grandson and he LOVES IT!!

1 DONT BUY THESE! Do not buy these! They break very fast I spun then for 15 minutes

and the end flew off don't waste your money. They are made from cheap plastic and have

cracks in them.

2 Two Stars , Cards are not as big as pictured.

5 Five Stars Great gift!

Pus
at

Sum
be

r

FTSM

25

3.4.5 Text Cleaning

The resultant CSV file was converted to a pandas data frame. The data frame was

prepared for the data cleansing process. First, all punctuations and special characters

were removed from the text. Then the English Stop words in computing which are

words that are filtered out before or after processing natural language data (text), were

removed from the corpus (Rajaraman & Ullman 2011) Typically, they are the

common words like "a," "the," "and" an "of", which appear in the text of the customer

review. All the corpus letters have been converted to lowercase letters. The cleaned

data is uploaded to a new data frame and ready for the next stage. An example of a

review after the text cleaning is shown in

Figure 3.2 An Example of a customer review after text cleaning

3.4.6 Data Classification Preparation

The data cleansing process created a clean text corpus to be used in upstream and

downstream tasks. The data frame created will then be passed in the tokenization

process and sequence padding to ensure that all sentences have a similar length and

then passed to the downstream task classifier. Table 3.4 shows the dataset number of

characters before and after dataset cleaning. The data was split into 75% for training

and 25% for testing. A close number to the default configuration of MATLAB for

data split into Machine Learning tasks by (Lanka et al. 2020) has been chosen for the

research experiment.

Pus
at

Sum
be

r

FTSM

26

Table 3.4 Statistic of the dataset

Dataset Number of characters

Dataset before cleaning (Number of Characters) 48,639,420

Dataset after cleaning (Number of Characters) 47,070,622

Removed Characters 1,568,798

3.5 AWS CLOUD ENVIRONMENT EXPERIMENTAL SETTINGS

In this research, the AWS environment has been utilized first to process the data. The

data pipeline is created, the models trained and then perform the hyperparameters

tuning task along with the data analysis. The following section will explain in detail

the AWS cloud environment, AWS S3 bucket, AWS SageMaker, AWS Glue and

AWS Athena. The reason this study used AWS is that when using Google Colab,

various problems were presented such as being out of memory and exceeding the

GPU time limit. AWS was the optimal solution to run the experiment.

3.5.1 What is AWS Cloud Environment?

Amazon Web Service (AWS) is the world's leading and most commonly and

compressive used cloud platform. It offers more than 200 features and services and

operates throughout several data centres around the globe. AWS serves millions of

customers ranging from the largest enterprise and government agencies to small start-

ups and researchers.

3.5.2 AWS S3 Bucket

Amazon Simple Storage Service (AWS 2020) is an object storage service. S3 buckets

are one of the oldest services of AWS that offers an extensive range of features such

as scalability, security, performance and data high availability.

In this research, the Amazon Custom Reviews dataset was initially stored in

the S3 Bucket. Using the S3 Bucket in this project was a must to copy the data from

the original location to the staging area to start the pre-processing procedures and

build the experiments. Also, S3 buckets have been used in all stages of development

and training the models. This will be demonstrated later in the system architecture.

Pus
at

Sum
be

r

FTSM

27

There are several classes in which the data based can be store on its frequency of

access and data lifecycle.

3.5.3 AWS SageMaker

Amazon SageMaker (“Amazon SageMaker – Machine Learning – Amazon Web

Services” n.d.) is a fully managed service provided by AWS. It is explicitly designed

for data scientists and developers to build, train, and deploy machine learning models

to have a high-performance platform and cost-effective solution. AWS SageMaker

offers a scalable environment that allows the researchers and data scientists to build

the right environment size and pay only for their requirements.

In this research, AWS SageMaker was used to develop and build the models

on SageMaker Notebook. Amazon SageMaker provides hosted Jupyter notebooks that

are easily used to explore the data and visualization tasks. AWS SageMaker is enabled

with direct connectors to AWS S3 buckets, allowing an easy way to access the data

without using the local hard disks for storage or data processing.

During the development phase, a small environment for a small dataset was

built. This allows significantly low fees to be paid for small machines. During the

training phase, the size of the machine is increased for the period of the training only.

This makes AWS SageMaker a very efficient and cost-effective solution for

researchers.

3.5.4 AWS Glue

AWS Glue (AWS Glue - Managed ETL Service - Amazon Web Services, n.d.) is a fully

managed ETL (extract, transform, and load) service. What makes AWS Glue cost-

efficient is that it is pay-as-you-go. So, no need to pay an upfront cost to run the

service. The dataset of Amazon Custom Reviews is provided in the S3 Bucket. Later

how the data loaded to AWS Athena will be explained. This process required an ETL

data pipeline that was built using AWS Glue.

Pus
at

Sum
be

r

FTSM

28

3.5.5 AWS Athena

Amazon Athena (Amazon 2020) is an interactive query service. The service is

generally used to analyze the data that is stored in Amazon S3. Amazon Custom

Reviews dataset is offered in Amazon S3 Bucket. Amazon Athena Is used to

accessing the dataset and load it using the AWS Glue service into a standard SQL

schema. Athena is a serverless service that AWS fully manages. There is no

infrastructure to manage, and it is a pay-as-you-go service based on the queries that

run only. The data is stored in Amazon S3 Buckets, and the results of all the queries

are also stored in Amazon S3 Buckets. This means that while using Amazon Athena,

getting a low price of the storage of S3 Bucket without the need to have upfront costs

incurred by building a large database.

3.6 THE HYPERPARAMETER TUNING OF WORD2VEC

In the following section, word embedding design will be discussed, and the detailed

methodology of how word embedding is used in the research. This will require a

detailed analysis of the algorithm's structure and implementation. The Word2Vec

internal mechanism is very important to understand the underlying hyperparameters

that this research addresses. For example, the window size mechanism in the model is

a very crucial hyperparameter that decides the architecture of the neural network. This

will be explained in the coming section.

Word2Vec is a learning algorithm to predict words from a given context. By

providing a context, the network will be able to predict what is the most likely word

that occurs in the context. This section explains in detail the technical implementation

of the Word2Vec neural network. Word2Vec can always be explained as a simple

input, output, and hidden layers. (Kimothi et al. 2020) illustrated that The size of the

layer is dependent on the input and the output of each layer. For example, in Figure

3.3 below W(VxN) is equal to the input size of (x), which is (V) multiplied by the size

of the hidden layer (h), which is (X). The same goes for the W(NxV), where N is the

size of the hidden layer (h) and (V) is the size of the output layer (y) which is (V).

Pus
at

Sum
be

r

FTSM

29

Figure 3.3 Neural Network represents Word2Vec Neural Network

Input layer: The input layer has one neuron for each and every unique word

in the corpus. The input layer represents what is called One-hot representation. It is a

very long vector "depending on the corpus" representing the index of a particular word

in the corpus. All its values are zeros except for the bit representing the represented

word, and it will turn into one. It is essential to know that the input layer of word

embedding is only a vector and not a probability.

Output layer: The neuron and words representing them appear in the input

layer are the same as the output layer. The output vector is the expected vector to

appear when the input vector is presented. So, for example, in Figure 1.3. the word x3

and y1 appears next to each other in the corpus. So, if the input is set to the vector of

x3, the output is the vector of y1. Vector of x3 means all neurons are zeros except the

neuron that represents the word x3 and the same goes for the output vector of y1. The

process starts with imposing the input of the x3 vector, setting random values for the

weights for the hidden layer and checking the output vector and measuring the error

by comparing the resultant vector and the target vector at the output layer. Then the

error is propagated back to the network, and the weights matrices are adjusted in the

hidden layers such that the output vector resembles the target vector. Then this

operation is repeated for the entire training set till the highest accuracy is achieved.

Pus
at

Sum
be

r

FTSM

30

Hidden layer: The hidden layer relies on the distributional hypothesis derived

from the saying, "You shall know a word by the company it keeps" by Firth (1957).

The hidden layer is a vector that represents a specific word in the corpus with specific

numbers from -1 to 1. This hidden layer weight matrix size usually is hundreds

(optimally from 100 to 300). When multiplying the input vector with the weight

hidden vector, the output is the probability distribution of the given input word vector

within its context. The word embedding is in the hidden layers of the weight matrix of

Word2Vec.

3.6.1 Implementation Example of Word2Vec

The example mentioned above of simple two consecutive words in the corpus is a

simplified example of the network design. The actual implementation of Word2Vec

contains a training window. For example, in the sentence "This product is very

reliable", The input layer will receive four different vectors V[This], V[product],

V[very] and V[reliable], and the expected output should be V[is]. These settings

ensemble the idea of predicting the word [is] based on the surrounding words with a

window size of two words to the left and two words to the right. That is why the

vector of [is] was not mentioned in the calculation

3.6.2 Continuous Bag-Of-Words Vs Skip-Gram

Continuous bag-of-words (CBOW): The input is a set of words, and the network task

is to predict the most probable word that accompanies the input words. Continuous

skip-gram will use a one-word vector to predict the accompanying words. CBOW is

relatively faster than skip-gram. However, skip-gram is proven to be more accurate.

Bornstein (2018) illustrates the architectural difference between the training methods

in (Figure 3.4). This research explores both skip-gram and CBOW settings as a part of

the hyperparameters navigations.

Pus
at

Sum
be

r

FTSM

31

Figure 3.4 CBOW vs Skip-Ngram

3.6.3 Word2Vec Similarity Feature

One of the most famous outcomes of Word2Vec is the similarity function between

two words or, to be specific, the similarity between two probability vectors

representing two different words in their context window. There are several ways to

calculate the similarity between two vectors, like Euclidean distance and cosine

similarity. Word2Vec chooses to use the cosine similarity of two vectors which is the

dot product of two vectors. Cosine similarity is the default function for similarity

calculation in Gensim Library. The simplistic idea to visualize them is to measure the

angle between two vectors in the vector space. The range of the cosine is from -1 to 1.

Then it uses the SoftMax function to convert it to a probability that should be ranged

from 0 to 1. The similarity feature is equivalent to the co-occurrence count matrix

calculation.

Several trained models exist and are available online for download. Google has

trained 100 billion unlabelled words for Google news and availed the vector space for

the download. This research trained the model from scratch using the existing dataset

from Amazon Customer Reviews. The use of the pre-trained model would have biased

the model to the hyperparameters used in the pre-trained model.

Pus
at

Sum
be

r

FTSM

32

3.6.4 Word Embedding Visualization

The distributed representation of word embedding is a relatively low dimensional

vector space representing the meaning of the words in the corpus. The dimensionality

is expected to be hundreds rather than thousands. This research navigates the

dimension parameter from dimension size of 10 to 500. Visualizing hundreds of

dimensions is an impossible task for 2D or even 3D diagrams. Principal component

analysis (PCA) (Gorban et al., 2008) presents solutions to visually illustrate the vector

space's dimensions. The diagram in Figure 3.5. illustrates the dimensionality of word

embedding using a projector tool in the TensorFlow online library (Smilkov et al.

2016). The visualization concept facilitates the understanding of the clustering of a

word and its vectors. However, mathematically, it is impossible to extract exact

meaning or use it for analogy identification due to the dimensionality reduction.

Figure 3.5 TensorFlow data visualization of word embedding

3.6.5 Word2Vec Hyperparameter

Gensim is a Python library that is free and open source. It is generally used to

represent documents as mathematical vectors that carry semantic meaning. It is

designed to be computationally efficient and to reduce the development effort as much

as possible. Gensim accepts unstructured raw text and uses an unsupervised neural

network and machine learning algorithm to generate the semantic mathematical

representation.

Pus
at

Sum
be

r

FTSM

33

Gensim library is considered to be the earliest implementation of Word2Vec.

The library is comprehensive and has been maintained over the years. The Gensim

version of 4.0.1 is used, which is the latest version at the time of the experiment. The

following section will explain and detail how trained and fine-tuned the

hyperparameters of the Word2Vec model.

The coming section explains the essential hyperparameters in the Word2Vec

model in detail: the window size and the dimension size.

a. Word2Vec Window Size

The window size parameter is one of the most critical parameters in the Word2Vec

algorithm. It defines how many words to the left and the right of the targeted word

will be considered in the calculations. Figure 3.6 indicates the size of the window

considering the target word "sat". If the window size is too small, like "1" only, then

there is a 100% probability that the word "dog" appears next to the word "sat".

However, if the window size changed to "2", then there will be a 50% probability that

the word "dog" appears next to the word "sat". This probability will be equal to the

probability that the word "fluffy" appears next to the word "sat". When more

sentences are processed to calculate the space vector, the probability will change. So,

the probability values mentioned here are for illustration of a single sentence only.

When the window size increases "for example, to fifty", the context of the word

increases, and the studied topic will become much wider. This will increase the

attribute of the targeted words and include more entities to them. This can be helpful if

the features of the words do not frequently appear too close to the targeted word. The

bigger the window size, the less interchangeability of the target word, so when the

window size decreases, it does better with interchangeability. When it increases, it

does better with relatedness analogies.

Pus
at

Sum
be

r

FTSM

34

Figure 3.6 Illustrates the window size of Word2Vec

b. Word2Vec Dimension Size

The dimension size parameter reflects on the size of the distributed representation,

which is the hidden layer. Typically, the dimension size varies from one to three

hundred. The bigger the dimension size, the easier it will be overfitted on the training

set and bad performance on the test. Tuning this parameter requires high accuracy on

the training set and low accuracy on the testing set. This means that the dimension size

is too big, and reducing it might solve the overfitting problem of the model.

The coming section will explain in detail all hyperparameters of Word2Vec

models and how to navigate the hyperparameters space seeking the best combination

for the downstream task.

c. Hyperparameters Navigation

Word2Vec algorithm implementation in the Gensim library is dependent on several

hyperparameters. Each hyperparameter is used to have a technical or semantic impact

on the generated vector space. In the coming section, list the hyperparameters of the

Word2Vec Algorithm in the Gensim Python library:

• Vector_size: Dimensionality of the word vectors. The dimension size of the

vector can be seen as a compressed meaning of numbers that are relevant to

each other. For example, in a well trained Word2Vec model, the vector of

"man" will be close to the vector of "King". Similarly, the vector of "woman"

will be close to the vector of "queen" in such a distance that the vectors of

Pus
at

Sum
be

r

FTSM

35

"man" and "king" are closer. According to the original paper of (Mikolov et al.

2013a), the best dimension size is 300. The dimension size is considered one

of the essential hyperparameters. Ideally, when the dimension size increases,

the vector representation will represent more information in-depth about each

word. In contrast, the mathematical vector representation will be more abstract

when the dimension size decreases and generalize more. For a visual

representation, the standard method used is dimensionality reduction to reduce

the dimensions to 3 or 2 dimensions presented in 2 or 3 dimensions diagrams.

• Window_size: The window size is the sliding window that the model uses to

slide on the corpus. As explained earlier, the increase of window size will

result in a holistic understanding of the sentence together, which can be

explained by relatedness. However, if the window size decreases, the vector

representation will have more interchangeability analogies. The commonly

known number of window sizes is 5.

• Word2Vec_epochs: Number of iterations (epochs) over the corpus. (Formerly:

iter). Ideally, when the number of epochs increases, the weight of the word

embeddings will be more representative of the corpus.

• Word2Vec_sg: #({0, 1}, optional) – Training algorithm: value equal to 1 for

skip-gram; otherwise CBOW. The difference was explained earlier.

• Word2Vec_hs: #({0, 1}, optional) – If value is 1, hierarchical softmax will be

used for model training. Suppose the value is 0, and the negative is non-zero.

In that case, negative sampling will be used

• Word2Vec_negative: #negative (int, optional) – If more than 0, negative

sampling will be used. The int for negative specifies how many "noise words"

should be drawn (usually between 5-20). If set to 0, no negative sampling is

used. Negative sampling enables the machine learning and neural networks

only to modify a small percentage of the weights, rather than all of them for

each training sample.

• Word2Vec_ns_exponent = 0.75 #ns_exponent (float, optional) – The exponent

used to shape the negative sampling distribution. A value of 1.0 samples

exactly in proportion to the frequencies, 0.0 samples all words equally, while a

Pus
at

Sum
be

r

FTSM

36

negative value samples low-frequency words more than high-frequency words.

The original Word2Vec paper chose the popular default value of 0.75.

• cbow_mean ({0, 1}, optional) If it is equal to 0, use the sum of the context

word vectors. If it is equal to 1, use the mean, it only applies when CBOW is

used.

• hashfxn (function, optional) – Hash function to randomly initialize weights for

increased training reproducibility.

d. Random Search Hyperparameter

In this experiment, an unconstrained random search algorithm was used to find the

optimal combination of the hyperparameters and then test the optimal combination of

those hyperparameters on the classification task.

Gensim library was used to construct Word2Vec word vectors. Word vectors

are created by performing an unconstrained hyperparameter search. The five most

important Word2vec hyperparameters are the dimension size of the learned vectors

with default value 100, the value of maximum sliding window size is 5, the negative

sampling exponent value is 0.75, and the negative sampling number is equal to 5.

A wide range for each hyperparameter has been initialized. A range starting

from 10 up to 500 values as the Dimension size, values as the window size is from 1

to 50, value as negative sampling exponent is 0.75, and negative sampling range from

50 to 20.

The total number of hyperparameter combinations based on the

hyperparameters and their ranges will result in 2,352,000,000 combinations. Each

hyperparameter combination will take a long time and due to the computational

resource limitation present. One thousand different combinations for the

hyperparameters have been randomly chosen from the total combination for this

research. At the last stage, parameters that produce the best results are saved as the

best hyperparameter set. The study of the impact of the change for a single

hyperparameter is not the primary concern of this study.

Pus
at

Sum
be

r

FTSM

37

3.7 CLASSIFICATION

The second part of the experiment is the classification task. It takes the word

embedding vector space as an input. Then train a deep neural network classifier on a

downstream task classification task. The output accuracy is, of course, dependable on

the DNN models. However, the aim is to find the discrepancy that might change the

overall accuracy of changing the input word embedding layers.

The word embedding vector space can be used as a simple classifier by itself.

Mathematical vector aggregation is generally used to find an average vector that

represents a sentence or a document. Comparing this average vector to multiple

vectors that represent multiple classes usually succeeds in identifying the

classification tasks. However, using a Deep Neural Network in concatenation with

word embedding usually results in higher accuracy.

In this experiment, the resultant word embeddings vector space was fed to

several Deep Neural Networks such as (CNN), (RNN)and (LSTM). Then, the results

of each accuracy are compared to identify the best hyperparameters combination for

each model. Multiple methods of measuring the accuracy of the models were used,

such as accuracy, precision, recall and F1 score for both testing and validation sets.

3.7.1 Recurrent Neural Network parameters and layers

This section describes the layers and the parameters used in Recurrent neural

networks.

The diagram below Figure 3.7 and Figure 3.8 illustrates the RNN parameters

and layers.

• The first layer is the embedding layer imported from the resultant vector space

word embedding of Gensim Word2Vec in section one. Change in the

dimension size will change the size of the embedding layer.

• The second layer is the spatial dropout that usually helps promote

independence between feature maps.

Pus
at

Sum
be

r

FTSM

38

• The third layer is the simple RNN layer.

• The fourth layer is batch normalization, a technique for training very deep

neural networks that standardizes the inputs to a layer for each mini-batch.

This stabilizes the learning process and dramatically reduces the number of

training epochs required to train deep networks.

• The fifth layer is a dropout, which refers to ignoring units (i.e. neurons) during

a specific set of neurons chosen at random during the training phase.

• The sixth layer is a method of downsampling the whole feature map to a single

value known as global max pooling. Setting the pool size to the size of the

input feature map would achieve the same result.

• Two classes are represented by the seventh layer, which is a dense layer

resulting in two neurons' output layers.

Figure 3.7 Simple RNN module summary

Pus
at

Sum
be

r

FTSM

39

Figure 3.8 Simple RNN module architecture

Pus
at

Sum
be

r

FTSM

40

3.7.2 Convolutional Neural Network parameters and layers

This section describes the layers and the parameters used in Convolutional neural

networks.

The diagram below in Figure 3.9 and Figure 3.10 illustrates the architecture of

CNN.

• The first layer is the embedding layer imported from the resultant vector space

word embedding of Gensim Word2Vec in section one.

• The second layer is the spatial dropout that usually helps promote

independence between feature maps.

• The third layer is the Convolution layer.

• The fourth layer is batch normalization, a technique for training very deep

neural networks that standardizes the inputs to a layer for each mini-batch.

This stabilizes the learning process and dramatically reduces the number of

training epochs required to train deep networks.

• The fifth layer is a dropout, which refers to ignoring units (i.e. neurons) during

a particular set of neurons chosen at random during the training phase.

• The sixth layer is a method of down sampling the whole feature map to a

single value known as global max pooling. Setting the pool size to the size of

the input feature map would achieve the same result.

• Two classes are represented by the seventh layer, which is a dense layer

resulting in two neurons' output layers.

Pus
at

Sum
be

r

FTSM

41

Figure 3.9 Simple CNN module summary

Pus
at

Sum
be

r

FTSM

