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ABSTRACT 

Word embedding is an emerging topic in recent years. The application of deep 

learning in word embedding is expanding and being used by top corporations like 

Google and Facebook in various applications such as search and recommendation 

engines. Some several techniques and libraries have been published like Word2Vec, 

FastText and GloVe. Word embedding usually defines the word by its accompanying 

words. Researchers often choose the default hyperparameters mentioned in the 

original paper for word embedding by Mikolov, such as Word2Vec. The default 

hyperparameters have different effects on different downstream tasks. One simply 

cannot use the same hyperparameters for word embedding for downstream 

classification tasks and semantic analogy downstream tasks. The default and 

recommended hyperparameters work the best with specific downstream tasks of 

analogy and semantic meaning. Complex downstream tasks such as classification 

might require different hyperparameters. This research aims to study hyperparameters' 

impact on the downstream task of classification. This will help the researchers to 

identify the combination of the word embedding hyperparameters that will fit their 

downstream tasks. In this research, different deep neural network (DNN) classifiers 

were used for the downstream classification tasks such as Recurrent Neural Network, 

Convolution Neural Network and Long Short-Term Memory Neural Network. The 

DNN networks were fed by different word embedding vector spaces trained using 

different hyperparameters. The results show that by navigating the hyperparameters 

space, the downstream task of classification accuracy can increase by 4.8%. The 

results also show that LSTM networks are more resilient to changes in the 

hyperparameters. However, CNN with a specific combination of word embedding 

hyperparameters can achieve the highest accuracy in the classification downstream 

task.  
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ABSTRAK 

Penyisipan perkataan adalah topik yang muncul dalam beberapa tahun terakhir. 

Penerapan pembelajaran mendalam dalam penyisipan kata semakin berkembang dan 

digunakan oleh syarikat teratas seperti Google dan Facebook dalam berbagai aplikasi 

seperti mesin pencari dan cadangan. Beberapa teknik dan perpustakaan telah 

diterbitkan, seperti Word2Vec, FastText dan GloVe. Penyisipan kata biasanya 

mentakrifkan kata dengan kata-kata yang berhampiran. Penyelidik sering memilih 

hiperparameter lalai yang disebut dalam kertas asal oleh Mikolov untuk penyisipan 

kata seperti Word2Vec. Hiperparameter lalai mempunyai kesan yang berbeza pada 

tugas hiliran yang berbeza. Penyelidik tidak boleh menggunakan hiperparameter yang 

sama untuk penyisipan kata untuk klasifikasi tugas hilir dan untuk tugas hilir analogi 

semantik. Hiperparameter lalai dan yang disyorkan berfungsi paling baik dengan tugas 

hilir tertentu analogi dan makna semantik. Tugas hiliran yang kompleks seperti 

klasifikasi mungkin memerlukan hiperparameter yang berbeza. Penyelidikan ini 

bertujuan untuk mengkaji kesan hiperparameter terhadap tugas klasifikasi hiliran. Ini 

akan membantu para penyelidik untuk mengenal pasti kombinasi perkataan 

penyisipan hiperparameter yang sesuai dengan tugas hiliran mereka. Dalam 

penyelidikan ini pengkelasan Rangkaian Neural Mendalam (RNM) yang berbeza 

digunakan untuk tugas klasifikasi hilir seperti Rangkaian Neural Berulang (RNB), 

Rangkaian Neural Konvolusi (RNK) dan Rangkaian Neural Memori Jangka Panjang 

(RNMJP). Rangkaian JNJ diberi input dengan ruang vektor penyisipan kata yang 

terlatih menggunakan hiperparameter yang berbeza. Hasilnya menunjukkan dengan 

menavigasi ruang hiperparameter, tugas hiliran ketepatan klasifikasi meningkat 

sebanyak 4.8%. Hasilnya juga menunjukkan bahawa rangkaian RNMJP lebih tahan 

terhadap perubahan hiperparameter. Walau bagaimanapun, CNN dengan kombinasi 

khusus hyperparameter penyisipan kata dapat mencapai ketepatan tertinggi dalam 

tugas hiliran klasifikasi. 
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CHAPTER I  
 

 

INTRODUCTION 

1.1 BACKGROUND 

Neural information retrieval is extensively being used in web search engines and 

social media data processing. Its accuracy degradation occurs due to the nature of 

using unsupervised machine learning techniques in processing its unstructured corpus. 

Sensitive scientific studies limit neural information retrieval applications due to the 

degradation of its accuracy. Search engines and social media frameworks 

recommendation systems are examples of a successful approximation of neural 

information retrieval.  

Word Embedding is a dense representation of words in a low dimensional 

vector space. As a concept, it can hold the same meaning as word vectors or 

distributed word representation. Word embedding is a mathematical representation of 

words into numbers and vectors that can be processed in several vector spaces. 

Processing text by neural network requires a form of numerical transformation of text, 

and in this case, it will be numerical vectors. Works by (Mikolov et al. 2013d,  2013a,  

2013b) discussed and presented promising solutions to enable the machine to learn 

high quality distributed vector representations to capture syntactic and semantic 

relations among words in the corpus.  

1.1  PROBLEM STATEMENT  

Word embedding hyperparameters are often taken with fixated values from the 

literature. The hyperparameters values mention in the literature by (Mikolov et al. 

2013c) are usually designed for a specific downstream task such as semantic 

analogies. Understanding Word2Vec fully might be overwhelming and time-

consuming, specifically for researchers who are focusing on other tasks such as 
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combining word2vec with SVM or others. Accordingly, shed light on this problem 

will allow the scientific community to have the means to understand how important 

the hyperparameters tuning task is for the downstream tasks. 

Some researchers assume that the values of the same hyperparameters can be reused 

for other downstream tasks such as classification. Former publications (Barkan & 

Koenigstein 2016) and (Grbovic et al. 2016) that used Word2Vec rarely discussed the 

values of the hyperparameters. This often led to a decrease in the accuracy presented 

in the downstream task such as classification. This work demonstrates the accuracy 

degradation when hyperparameters tuning for Word2Vec are ignored. The main 

reason for the inaccuracy decline is the low quality of the word embeddings fed to the 

classification network (Barkan & Koenigstein 2016; Grbovic et al. 2016). This work 

will also demonstrate how the quality word embedding affects the overall accuracy of 

the downstream task. 

A high-quality word embedding can be used for downstream classification 

tasks such as sentiment analysis. Generating high-quality word embeddings depends 

on the quality of the input corpus and the hyperparameters of the model (Caselles-

Dupré et al. 2018). The definition of high-quality word embeddings varies between 

different downstream tasks, which means that the high-quality word embeddings 

designed to be used in the semantic analogy are different from the high-quality word 

embeddings that are designed to be used in classification. 

Analyzing different combinations of word embeddings hyperparameters and 

their effect contribute towards the classification tasks. This can be measured by the 

accuracy metric of the classification neural network. Thus, examining the impact of 

the change of hyperparameters of the word embeddings on the classification tasks is 

necessary.  

1.2 RESEARCH OBJECTIVES  

The objectives of this research can be summarised as follows:  
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i. To find the best hyperparameters combination to generate high-quality word 

embeddings on the classification task.  

ii. To measure the quality of the generated word embeddings via classification 

task performance using several types of Deep Neural Networks such as 

Recurrent Neural Network, Convolutional Neural Network and Long-Term 

Short Memory.  

1.3 RESEARCH SCOPE 

The hyperparameter tuning of Word2Vec will be the primary focus of this study. We 

evaluate the impact of changing the combination values of Word2Vec 

hyperparameters on the downstream task of classification by using different Deep 

Neural Network classifiers of Recurrent Neural Network, Convolution Neural 

Network and Long Short-Term Memory Neural Network. The main research scope is 

to improve the accuracy of the classification downstream task by modifying 

hyperparameters combinations. This research uses the Amazon Custom Reviews 

dataset that contains textual data representing the customers' opinion, and it is a star 

rating for various products that were sold on Amazon.com. 

1.4 SIGNIFICANCE OF PROJECT 

The results of this work can help researchers understand the customer product 

experience and construct a high-quality understanding of the evaluation of the natural 

language opinion and the variation in the perception of different products. This has 

been significantly used for marketing research and promotional and target marketing 

and addresses several problems such as bias in reviews and different opinions. The 

study contributes directly to the empirical testing of different combinations of 

Word2Vec hyperparameters and their impact on the classification tasks. Researchers 

can replicate and carefully select the best hyperparameters combinations of Word2Vec 

that suits their experimental design.  
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1.5  REPORT OVERVIEW 

The methodologies and their stages would be described in the following:  

i. Chapter I: this introduces the research idea and describes the study's 

background. Furthermore, the research gap is stated in the problem statement, 

which focuses on the problem that will be solved as a result of this study's 

contribution. Furthermore, the study's objectives and the research scope as 

well. 

ii. Chapter II investigates the literature review of the study in which word 

embedding is being described. This chapter highlights the other techniques 

used and comparison to Word2Vec proposed technique. Finally, a critical 

analysis of the related work is being provided by this chapter.  

iii. Chapter III illustrated the research methodology, which consists of the dataset 

used in this research, pre-processing tasks for the dataset, AWS cloud 

environment used for processing the data, proposed Word2Vec method has 

been declared by explaining the baseline methods, hyperparameter, 

classification and the evaluation. 

iv. Chapter IV discusses the experimental results in further detail. After 

identifying the random generation of the hyperparameters of the experiments, 

this chapter displays the results of the model.  

v. Chapter V summarises the research by providing a final summary that 

summarises all the thesis. In addition, the contribution of the study, Research 

limitation and Finally, the future works. 

1.6 SUMMARY 

This study examines the improvement in the accuracy of the classification 

downstream task by modifying hyperparameters combinations Word2Vec for the 

Amazon Custom Reviews dataset.
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CHAPTER II  
 

 

 LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter will describe different word embedding techniques. The primary 

approach that this research is focusing on is Word2Vec. Then will discuss the details 

of word embedding as a neural network and how it is used in different downstream 

tasks. The chapter will also discuss word embedding techniques, compare them to 

Word2Vec, and list word embedding usage. Lastly, a brief review of some related 

works to hyperparameters tunning with Word2Vec for different downstream tasks is 

also reviewed. This chapter is organized as follows: Section 2.2 introduces the 

definition of word embedding and its representation. Then will discuss Word2Vec in 

further detail. It begins with the definitions, limitations, and comparison Word2Vec 

and TF-IDF, which can be seen in Section 2.3. In addition, Section 2.4 illustrates 

different techniques of word embedding in more detail (like GloVe and FastText). 

Finally, in Section 2.5, Related works to Word2Vec hyperparameter tunning applied 

to a different downstream task or recommendation systems. Section 2.6 gives a 

summary of this chapter.  

1.2 WORD EMBEDDING 

The basic concept of word embedding is to transform the word representation into 

numerical values that can be processed and compared to the context and extract 

semantic and analogies from the corpus. The following section will discuss two 

different basic techniques that transform the corpus into numerical representations. 

The techniques are One-Hot representation and distributed distribution.  
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1.2.1  One-Hot Representation 

The One-Hot representation is the simplest method of representing the word in the 

corpus. For each unique word of the corpus, there is one vector that represents this 

word. The vector is composed of two binary values [0,1]. Based on the order of the 

corpus and the word position in the corpus, the relevant bit in the vector will be turned 

into one. Furthermore, every other bit will be turned to zero. Figure 2.1 illustrates the 

vector projection of the word representation in the sentence.  

 

Figure 2.1 One-Hot Representation of the word SAT in the small given text. 

1.2.2  Distributed Representation 

The distributed representation of a word is a mathematical representation of the word 

vector in the corpus. One-Hot representation does not contain valuable information 

about the word except for its index, which might be considered arbitrary as it may or 

may not be determined by the word's position in a particular context. However, the 

distributed representation of the word contains different values for each word in the 

corpus and its relation to other words in the corpus. The distributed representation can 

be used mathematically to extract analogies and semantics of the word given its 

context. Figure 2.2 illustrates the distributed representation of the word 'SAT'. The 
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mathematical numbers in the vector are challenging to be interpreted by a human. The 

vector space of all the distributed representations of the words in the corpus is 

interrelated. Mathematical operations in the space vector result in different meanings 

like semantic, interchangeability, relatedness, and analogies. 

The advantage of distributed representation versus One-Hot representation is 

the dimensionality and the learning of semantics of the words. The One-Hot 

representation is very high in dimensionality as it explicitly maps every unique word 

in the corpus. Perform operations like the co-occurrence matrix will be gigantic in the 

case of a big corpus. However, the distributed representation will reduce the 

dimensionality and decrease the computational expense of the processing matrix. It is 

important to note that generating the vector space of distributed representation is 

computationally expensive. However, once obtained, processing it will be 

significantly fast even for online computation for production applications. The number 

of dimensions of distributed representation can vary, but ideally, it is from one 

hundred to three hundred dimensions. The meaning of a word in the distributed 

representation is distributed over all the dimensions. For example, the vector ['SAT'] 

meaning is distributed over all other vectors of V['fluffy'], V['DOG'], V['ON'], 

V['THE'] and V['MAT'] as shown in figure1.2. The simple mathematical approach 

behind distributed representation is to obtain lower-dimensional space to represent the 

meaning of all words in the text. Word embedding core is the distributed 

representation.  Pus
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Figure 2.2 Distributed representation of the word 'SAT' 

1.3 WORD2VEC 

Word2Vec is a neural network that acts as a word embedding algorithm. It turns the 

corpus of text into vector space that can be processed mathematically. Google labs 

developed Word2Vec by (Mikolov et al. 2013e) , and it is claimed to be used by 

Google search engine, among other algorithms. Mikolov, Chen, et al. (2013) released 

the code online, and the trained model of 1.6 billion words described as state-of-the-

art performance for measuring syntactic and semantic word similarity.  

Since Word2Vec is a neural network, it goes with the exact mechanism of input, 

output, and hidden layers. The layers in the neural network of Word2Vec are word 

embedding. The weights of the neural network of Word2Vec are initialized to random 

numbers. Then the network keeps adjusting the weights by going through sentence by 

sentence (sentences that contain the designated word) until the weights are optimized 

to represent this word in the corpus best. The embedding typically is the weight 

vectors themselves, which often coincides with the activation pattern of the hidden 

layer. The outstanding findings of Word2Vec are the resultant weights vectors in the 

hidden layer. The resultant vector of different words can be mathematically calculated 

against each other to answer different linguistics questions like similarity, relationship, 

and semantic meaning. The most common example used to describe this is "king, 
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man, queen, woman" vectors. If the corpus is big enough, the "king" and "man" 

vectors should be close together. 

Moreover, the vector of "woman" and "queen" should be close together. The 

elegance of Word2Vec comes in the ability to decipher this equation mathematically 

"Vector[king] + Vector[queen] - Vector[man]=?" the answer is a vector [woman] 

explained  (Mikolov et al. 2013d). The base and simple outcome are that Word2Vec 

has successfully represented the words in any given corpus by a mathematical vector 

which is the outcome of the hidden layers of the trained neural network. This vector 

space can be used mathematically to extract meaning and quantify the relationship 

between different entities in the given corpus.  

When comparing different word embedding techniques such as Word2Vec, 

Glove and FastText, Word2Vec seems to be the most researched. By searching for the 

terms “word2vec NLP”, “glove NLP”, and “FastText NLP” in Google Scholar, the 

number of publications was 26100, 22000 and 9060, respectively. Adding the word 

NLP” to the word embedding techniques was important to get relevant results. Based 

on these results, numerous studies have been published for word2vec in the NLP more 

than other word embedding technique. 

2.1.1 Word2Vec Limitations 

Word2Vec works well with one single word. However, many entities are defined with 

more than one word. There are several research articles and solutions that tried to 

solve this problem with no outstanding results. The Facebook research group 

published a research article about InferSent where they proposed sentence 

representations successfully with high accuracy (Conneau et al. 2017). This concept 

was represented earlier with a group of researchers in 2015 called Skip-Thoughts 

(Kiros et al. 2015) 

1.3.1 Comparison between TF_IDF and Word2Vec 

There are many elementary approaches to solve multiword sentences or entities. The 

mathematical average of two-word embedded vectors can result in decent 
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representations of the multiword entity. Document classification can be done with TF-

IDF (Term Frequency-Inverse Document Frequency). Several libraries can deploy a 

simple baseline. TF-IDF works with counting the frequency of a specific word in a 

given document, adjusting the value to the inverse of counting the same word in all 

documents. This method has been used for years, and it seems to be working well. TF-

IDF accuracy in document classification can be compared to Doc2Vec (Maslova & 

Potapov 2017). Using TF-IDF, weight averaging can be used in document 

classification. 

Another example of the difference between word embedding and TF-IDF is 

the complexity of the model. In the case of the classical baseline model of TF-IDF, it 

is a basic counting and calculation which are easier to modify, debug and control. 

However, for complicated models like Word2Vec and Doc2Vec, the debugging and 

the modification is more complicated, and, in some cases, it is impossible to 

understand the error source. Word embedding might not be the most suitable solution 

for all problems. However, it opens other possibilities that were not achievable before. 

Using TF-IDF is easier to run and understand however word embedding is much more 

complicated than conventional methods.  

Another limitation of Word2Vec is its trained model. It is complicated to 

expand it by adding more text to the trained model. Till this moment, none of the 

existing techniques enables those extensions. This means the model expansion is very 

computationally expensive and must amend the new text to the original corpus and 

retrain the model from scratch. 

2.2 DIFFERENT TECHNIQUES FOR WORD EMBEDDING 

Several other word embedding techniques can cover some of Word2Vec limitations. 

Such as and not limited to GloVe and FastText. However, those techniques have their 

limitations as well. In this section, some of those techniques are discussed, along with 

a good comparison between techniques.  
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GloVe: (Global Vectors for Word Representation (Pennington et al. 2014) is 

an unsupervised learning technique for obtaining word embedding. Its implementation 

is different from Word2Vec and FastText. GloVe needs to prepare the whole co-

occurrence matrix at once and load it in the memory, which might be very memory 

expensive. In the case study of Wikipedia or Google News, GloVe requires very high 

RAM specifications to pre-process the corpus and load the co-occurrence matrix to the 

memory. Due to the computational cost, it is not efficient to be used with the big 

corpus. However, it will perform very well with a smaller corpus (Pennington et al. 

2014).  

FastText is a word embedding algorithm that the Facebook AI research group 

released in August 2016 (Bojanowski et al. 2017). The gensim API for FastText is 

very similar to Word2Vec gensim API. The experience of running the code is very 

similar. FastText is written in C++. It is available with Python API as well. By the end 

of 2017, Gensim released a native Python library for FastText to enhance the 

implementation experience of C++ core code. Against several claims, Facebook AI 

research claims that FastText can be trained with one billion words in less than ten 

minutes with a standard multicore CPU. The research was published in 2016 by 

Joulin, Grave, Bojanowski and Mikolov (2016). The speed of FastText in the memory 

was a difficult obstacle, and (Joulin et al. 2016) proposed a solution later in 2016 by 

using product quantization to store word embedding in the memory, claiming (Joulin 

et al. 2016) that it outperforms the state-of-art by a good margin.  

FastText, in general, is much slower than Word2Vec, even if it is written in 

C++. The main reason for the slowness of FastText is related to how it works. The 

similarity in FastText goes deeper than Word2Vec. The similarity function in FastText 

is calculated by measuring the similarity between the subwords. For example, the 

word “superpower” will be divided to su + up + pe + er + rp + po + ow + we + er. The 

algorithm calculates the similarity among all those subwords. This is the main reason 

behind its slowness. This is proven to be beneficial since some chunks of words can 

be more related to the whole word morphologically. So, if two words share many sub 

words, they should be more similar than if the whole words are not. FastText (Joulin 

et al. 2017) has much better results considering the morphology of the words. The 
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interchangeability of the words has much more value than Word2Vec as there is a 

tendency for interchangeable words to share sub words.  

The slowness of FastText (Joulin et al. 2016) is one of the drawbacks of the 

algorithm. As mentioned above, the slowness comes from the extra calculation of the 

subwords. Nevertheless, it gives a FastText morphological edge against other word 

embedding algorithms. However, the sub-word calculations impose a significant error 

as it might consider the word "night" and "knight" similar, which is semantically 

wrong. Another example is "can" as a container or "can" as a verb. Using the spaCy 

library in Python can be beneficial to distinguish the difference in meaning. It is 

important to note that even when the maximum length parameter is set to zero, which 

means that there are no sub words taken into consideration, still FastText is much 

slower than Word2Vec.  

Word2Vec outputs a numerical vector that represents the word appearance 

within a context. However, it never classifies the sequence of words together. For 

example, how to calculate the similarity between two sequences of words "sentences". 

The simplest method to do this is to average the vector representation of each word.  

2.3 NEURAL NETWORKS 

2.3.1 Recurrent Neural Network  

A recurrent neural network (RNN) is a class of artificial neural networks where 

connections between nodes form a directed graph along a temporal sequence. This 

allows it to exhibit temporal dynamic behaviour. Derived from feedforward neural 

networks, RNNs can use their internal state (memory) to process variable-length 

sequences of inputs. This makes them applicable to tasks such as unsegmented, 

connected handwriting recognition or speech recognition.  

2.3.2 Convolutional Neural Network 

 A Convolutional Neural Network is a deep learning network developed for image 

classification and text classification (sentence prediction) (Zhang & Wallace 2015). It 
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consists of a series of convolutions and sub-sampling (pooling) operations to analyze 

only relevant information (e.g. borders and shapes of an image) and simplify the 

initial data. That will overcome overfitting data problems that could affect a multi-

layer perceptron (MLP) network. 

2.3.3 Long Short-Term Memory 

A Convolutional Neural Network is a deep learning network developed for image 

classification and text classification (sentence prediction) (Zhang & Wallace 2015). It 

consists of a series of convolutions and sub-sampling (pooling) operations to analyze 

only relevant information (e.g. borders and shapes of an image) and simplify the 

initial data. That will overcome overfitting data problems that could affect a multi-

layer perceptron (MLP) network.  

Long Short-Term Memory (LSTM) networks were proposed by (Hochreiter & 

Schmidhuber 1997) are suitable to classify serialized objects such as sarcasm 

detection. LSTM is an extension for recurrent neural networks, which extends their 

memory. So, it is suitable easier to remember past data in memory. LSTM is well-

suited to classify, process and predict time series and sequential text data. Many 

applications that the LSTM is suitable for Text generation, language translation, and 

handwriting recognition are the widespread application of LSTM. The LSTM repeat 

module is more difficult in Representing. Instead of making a single layer of the 

neural network, four layers communicate in a specific way. It has two states besides: 

hidden state and cell state.  

2.4 RELATED WORK 

The literature has shown great interest in the task of Word2Vec hyperparameter 

tunning. This section aims to discuss and presents the prior researchers' works. These 

studies were performed in different ways by applying Word2Vec hyperparameter 

tunning on some recommendation systems, other downstream tasks and in different 

languages.  
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The word embedding is designed to analyze the corpus of text and classify it 

eliminates the need for users to remark anything. It is a kind of unsupervised machine 

learning that learns from current words and sentences without requiring interpretation. 

The specific abilities of word embedding are determined by how it is applied. Here are 

a few illustrations of how Word embedding has been used to various problems.  

• Automated text tagging: Nikfarjam et al. (2015) used word embedding to 

extract drug response characteristics from a social media corpus, claiming an 

accuracy of 82 %, which is an increase over the baseline assessed.  

• Recommendation Engines: Ozsoy (2016) researched the architecture of a 

recommendation system utilizing Word2Vec word embedding in the 

Foursquare check-in dataset and found significant improvement for word 

embedding recommendation engines.  

• Machine translation: Mikolov, Le, et al. (2013)using two alternative 

translations for the same content to train the word embedding algorithm. 

Showed how monolingual data might be mapped to bilingual data. The 

distributed representation can generate vector space similarities and 

successfully translate them. Mikolov's experiment obtained an accuracy of 

90% of precision for translation between English and Spanish. Chelba et al. 

(2013) released a new one-billion-word data set that will be used to measure 

statistical language modelling. This dataset has the potential to be 

implemented for both translation and word embedding assessments. 

• Question and answers: Even though there has been much study on automating 

an AI agent to answer human queries, Weston et al. (2015) believe no 

complete system can do it yet. They claimed that having an automated AI 

question and answer system might be achieved by combining word embedding 

with an improved memory network model. 

• Sentiment analysis is an excellent illustration of just how Word2Vec can be 

used. It is possible that categorizing user reviews will take a long time. In the 
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classification of sentiment analysis, there are various supervised learning 

approaches. Using Word2Vec, on the other hand, can be a more 

straightforward method for sentiment analysis. The IMDB movie review 

dataset was researched in 2015 by a Facebook AI research group led by Mesnil 

et al. (2014). Several integrated machine learning techniques were used to 

study the IMDB movie review dataset. In their study, they studied the NB-

SVM, RNN-LM, and sentence vector methods. They have made their code 

public to make it simple to replicate their results and increase their 

accountability.  

2.4.1 Tuning Word2Vec for Large Scale Recommendation Systems  

Chamberlain et al. (2020) study Word2Vec as an effective system mastering device 

that emerged from Natural Language Processing (NLP) and is now carried out in more 

than one domain, inclusive of recommender systems forecasting and community 

analysis. As Word2Vec is frequently used off the shelf, the researchers studied 

whether the default hyperparameters are appropriate for recommender systems. In this 

work, the researchers first elucidate the significance of hyperparameter optimization 

and display that unconstrained optimization yields a mean 221% development in hit 

charge over the default parameters. However, unconstrained optimization results in 

hyperparameter settings that can be very high priced and no longer viable for massive 

scale advice tasks. The researchers display 138% common development in hit charge 

with a runtime budget-restricted hyperparameter optimization. 

Furthermore, to make hyperparameter optimization relevant for massive scale 

advice troubles in which the goal dataset is simply too massive to look over, the 

researchers look at generalizing hyperparameters settings from samples. They 

displayed that using restricted hyperparameter optimization, the usage of handiest a 

10% pattern of the records nonetheless yields a 91% common development in hit 

charge over the default parameters whilst carried out to the whole datasets. Finally, 

the researchers observed hyperparameters discovered using the technique of restricted 

optimization on a pattern to the Who to Follow advice carrier at Twitter and are 

capable of boom compliance with prices with the aid of using 15%. 
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2.4.2 Word2Vec Applied to Recommendation: Hyperparameters Matter 

Caselles-Dupré et al. (2018) studied the effect of Skip-gram with negative sampling. 

This is a common hyperparameter used in Word2Vec to create a high-quality work 

embedding and vector representation of a given corpus. Given that it is commonly 

used, it is not precisely accurate to use the same tuned model for different tasks such 

as classification, recommendation, sentiment analysis and others. The 

hyperparameters are often tuned dependently based on the given dataset and the 

downstream tasks. Results show that optimizing neglected hyperparameters, namely 

negative sampling distribution, number of epochs, subsampling parameters and 

window size, significantly improves performance on a recommendation task and can 

increase it by order of magnitude. The outstanding finding of this research is that the 

hyperparameters tuning functions in natural language processing tasks and 

Recommendation tasks are noticeably different. 

2.4.3 Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream 

Tasks 

 Adewumi et al. (2020) confirmed empirically that the combination of 

hyperparameters is highly dependent on the downstream tasks. They have used 

different combinations of hyperparameters to create a high-quality vector 

representation that can be used to build a state-of-the-art downstream task such as 

classifications. They have tested their hypotheses with intrinsic and extrinsic 

(downstream) evaluations, including named entity recognition (NER) and sentiment 

analysis (SA). Outstanding findings such as high analogy scores do not necessarily 

correlate positively with F1 scores, and the same applies to focus on data alone. 

Increasing vector dimension size after a point leads to poor quality or performance. 

They also noted that the size of the corpora might be irrelevant, and it is more about 

the content and the high-quality representation of the vector space.  

2.4.4 Learning Quality Improved Word Embedding with Assessment of 

Hyperparameters 

Yildiz & Tezgider (2020) studied the hyperparameters tuning for Word2Vec to 

generate high-quality word embedding and vector spaces. The research focused on the 
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parameters of the minimum word count, vector size, window size, and the number of 

iterations. They have also introduced two main methods: computationally more 

efficient than grid search and random search. They used around 300 million words. 

The downstream tasks were developed using deep learning classifiers. The task was to 

classify documents into ten different classes. The classification task was used to 

evaluate the quality of the generated word embedding and vector spaces. Their results 

show a 9% increase in the overall classification accuracy, which inherently provides 

undeniable proof that the parameters tuning can result in high-quality word 

embeddings that can be translated and propagated to the accuracy of the downstream 

tasks of deep neural networks classification tasks. Table 2.1 summarises all the studies 

mentioned earlier. 

Table 2.1 Summary of previous related work 

Author Parameters Feature Dataset 

Chamberlain et al. 

(2020) 

▪ Window size 

▪ Embedding 

dimension 

▪ Negative sampling  

▪  Negative samples 

▪ Initial learning 

rate  

▪ Recommendation 

task  

▪ Twitter retweet 

▪ Twitter follow 

Yildiz & Tezgider 

(2020) 

▪ Window size 

▪ The minimum 

word count 

▪ Vector size 

▪ Iterations numbers  

▪ Classification model ▪ 3 million Turkish texts 

Adewumi et al. 

(2020) 

▪ Window size 

▪ Dimension size 

▪ Epochs  

▪ Named entity 

recognition 

▪ Sentiment analysis  

▪ Internet movie database 

(IMDB) of movie reviews  

Caselles-Dupré et 

al. (2018) 

▪ Window size 

▪ Negative sampling 

▪ Number of epochs 

▪ Embedding size 

▪ Learning rate  

▪ Sub-sampling 

parameter  

▪ Recommendation 

▪ Task 

▪ Music datasets  

▪ E-commerce dataset  

▪ Click-stream dataset 

The hyperparameters are often tuned dependently based on the given dataset 

and the downstream tasks. Several studies proposed different values for 

hyperparameter tunning for different downstream tasks applied on the dataset—most 

of the studies proved to achieve a higher accuracy rate. For the hyperparameter used, 

All of the studies have used the window size parameter ((Chamberlain et al. 2020); 

(Yildiz & Tezgider 2020);(Adewumi et al. 2020);(Caselles-Dupré et al. 2018)). Two 
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of the studies by ((Chamberlain et al. 2020)and  (Caselles-Dupré et al. 2018)) have 

used the Word2Vec hyperparameter tunning for recommendation tasks on different 

datasets and achieved a higher accuracy on the recommendation. A deep learning 

model was developed for the classification model to evaluate the quality of the word 

embedding by(Yildiz & Tezgider 2020)  A BiLSTM network was trained on the 

IMDb dataset for sentiment analysis (Adewumi et al. (2020). (Chamberlain et al. 

2020) have used a shallow network for the recommendation task on the Twitter 

follows and Twitter Retweet dataset.  

2.5 SUMMARY 

The chapter reviews related past studies on word embedding and the relevant 

techniques for word embeddings such as Word2Vec, GloVe and FastText. In addition, 

analyze those selected related research work for word embedding and Word2Vec 

technique applied by researchers on different classification tasks and other 

downstream tasks. The analysis of these studies will introduce and clarify that using 

Word2Vec hyperparameters tunning significantly impacts classification accuracy. 
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CHAPTER III   
 

 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter introduces the methodology of Word2Vec hyperparameter tuning and 

classification downstream tasks using several types of Deep Neural Networks such as 

RNN, CNN, and LSTM. Furthermore, it presents the study's research design, 

including information about the dataset and its pre-processing task. The 

implementation of algorithms depends on the Python programming language using the 

AWS platform. This chapter starts explaining the dataset going through the pre-

processing task and describes the evaluation metrics to assess the performance of the 

algorithms. Finally, it explores the hyperparameter tunning in detail. 

3.2 RESEARCH DESIGN 

The methodology of this study consists of five phases. Phase one is the preparation of 

the Amazon Custom Reviews dataset. This preparation involves the specific technique 

that is used to extract and filter the data. Phase two is the data pre-processing. This 

phase focuses on the data loading and the random selection of the subset of that data 

that will be used in training. Phase three is the AWS cloud environment experimental 

settings. Phase four is the hyperparameter tuning of Word2Vec in preparation for 

phase five, the downstream classification task.  

As mentioned before, the experiment objective is divided into two main 

sections. First, to find the best hyperparameters to generate high-quality word 

embeddings. Then the generated word embeddings are evaluated by testing its 

accuracy through downstream tasks of classification using several types of deep 

neural networks such as RNN, CNN, and LSTM. Comparison of the result of the word 

embedding with the same dataset through more than one deep neural network can give 
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a great insight on which of the neural network can achieve more accuracy rate with 

hyperparameter tuning and which neural network is more resilient to the 

hyperparameter tuning. 

The first section aims to train the Word2Vec model to generate a high-quality 

vector space. The experiment is designed to try hundreds of several combinations of 

hyperparameters of Word2Vec to obtain the highest possible quality of vector space of 

word embedding. The resultant vector space of word embedding will be used in the 

second section of the experiment. It is the downstream task of classifying the Amazon 

Custom Reviews into the predefined ranking of the reviews.  

The second section is the classification task that will use different types of 

Deep Neural Networks to find the highest possible accuracy in combination with 

different word embeddings. The first layer in the Deep Neural Networks will be the 

embedding layer. The resultant word embeddings from section one will be converted 

to an embedding matrix that fits into the Keras embedding layer. This layer will be 

defined as a non-trainable layer. Not letting Keras change the weights of the 

embedding layer will measure the effectiveness of the quality of the generated layer 

from section one. 

3.3 DATASET 

This research uses the Amazon Customer Reviews Dataset(“Amazon Customer 

Reviews Dataset” n.d.) (a.k.a. Product Reviews). This data has been collected over 

two decades since 1995. The data contains millions of Amazon customers that 

provided hundreds of millions of reviews. The reviews contain the customer opinion 

about their experience with the products and the purchase order through the 

amazon.com website. The dataset of Amazon Customer Reviews has been used 

several times in academic research , specifically in Natural Language processing by( 

(Nandal et al. 2020);(Srujan et al. 2018); (Pankaj et al. 2019)). The field of 

Information Retrieval and Machine learning has significantly used the dataset.  

• The dataset has helped several researchers to understand the customer product 

experience and construct a high-quality understanding of the evaluation of the 
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natural language opinion and the variation in the perception of different 

products across various geographical regions. This has been significantly used 

for marketing research and promotional and target marketing and addresses 

several problems such as bias in reviews and different ways of expressing the 

opinion. If you use the AWS Command Line Interface, you can list data in the 

Bucket with the "ls" command: aws s3 ls s3://amazon-reviews-pds/tsv/ 

 The following section will be list in detail the dataset description: 

• The link for the dataset “Amazon Customer Reviews Dataset” , 2015, 

https://s3.amazonaws.com/amazon-reviews-pds/readme.html 

• The dataset is composed of over 130 million reviews. This research used only 

100K reviews. 

• The data is stored on Amazon Web Services S3 bucket US East Region. 

• The data is available in TSV format. 

• If you use the AWS Command Line Interface, you can list data in the Bucket 

with the "ls" command: aws s3 ls s3://amazon-reviews-pds/tsv/ 

• Each individual customer review is presented in one line. 

• The dataset of Amazon Customer Reviews contains the review text itself. It 

also contains the metadata of the data. The metadata describes the data in the 

customer review. The metadata is composed of the below significant sections 

• The reviews are collected from the Amazon.com website associated with data 

from 1995 to 2015. This dataset contains more than 130M customer reviews. It 

represented the human expression of the customer experience and how people 

evaluate and express their opinions on the products.  

• The dataset of Amazon Customer Reviews contains product reviews in 

multiple languages. This can be used in multilingual research to understand 

how people evaluate and express their opinions about the same product in 

different languages. The reviews collected in different languages from five 

countries are counted as more than 200K reviews. This research only focuses 
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on the English language due to the limitation of time and the computational 

resources.  

• Some of the reviews have been marked as non-compliant due to a violation of 

Amazon policies. This dataset can detect biased reviews and possible 

promotional reviews that aim to create a fake representation of actual 

customers. This dataset was not used in our research as the focus was only on 

generating a high-quality word embedding representation by tuning different 

hyperparameters of Word2Vec.  

3.4 PRE-PROCESSING 

In this stage, the data is prepared by first splitting the text when running on a set of 

pre-processing algorithms to prepare it for the following stages. The pre-processing 

tasks can be described as follows:  

3.4.1 Data Loading  

Data loading is the process of retrieving the data from the S3 Bucket and loading it 

directly to Amazon Athena. After Creating the Athena environment on the AWS 

account, run the below ETL job that will load the data from S3 Bucket. 

3.4.2 Data Selection 

The selection process was performed over AWS Athena. Random selection has been 

performed to ensure no bias in data selection. Due to the limitation in the 

computational expenses, 100K reviews are used with a maximum of 40 words per 

review. Figure 3.1 show a sample of the dataset.  
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Figure 3.1 Amazon Customer Reviews dataset sample 

Then, the four-column that is relevant to our experiments are selected, which 

are the review id, review headline, review body and the star rating. These columns and 

their explanation are shown in Table 3.1. The four columns are selected from the 

Amazon Customer Reviews dataset sample, as shown in Table 3.2. 

Table 3.1 Dataset selected columns explanation 

Data Column Explanation 

Review_id The id of the review 

Review_headline The title of the review 

Review_body The review texts 

Star_rating The 1–5-star rating of the review 

 

Table 3.2 An example of the dataset columns 

Review_id Star_rating Review_headline Review_body 

R298788GS6I901 5 my daughter loved it 

and i liked the price 

and it came ... 

my daughter loved it and i liked the 

price and it came to me rather than 

shopping with a ton of people around 

me. Amazon is the Best way to shop! 

R2SDXLTLF92O0H 5 Five Stars It was a birthday present for my 

grandson and he LOVES IT!! 

To be continued… 
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…continuation 

RNX4EXOBBPN5 1 DONT BUY THESE! Do not buy these! They break very 

fast I spun then for 15 minutes and the 

end flew off don't waste your money. 

They are made from cheap plastic and 

have cracks in them.  

R1UE3RPRGCOLD 2 Two Stars Cards are not as big as pictured. 

R1JS8G26X4RM2G 5 Five Stars Great gift! 

3.4.3 Ranking Buckets 

The customer rating comes with 5-star ranks. For simplicity, the five ranks are divided 

into two ranks. The lower rank obtains a one and two-star ranking, and the higher rank 

contains the three, four and five-star ranking. Python Jupyter NoteBook is used to 

perform this process on AWS SageMaker.  

3.4.4 Data Concatenation 

The processed data has been concatenated to form a new comma-separated values 

(CSV) file, which is a delimited text file that uses a comma to separate values. The 

product review title and the review body have been concatenated to provide 

comprehensive customer opinion data. The concatenated text has been merged with 

the new ranking buckets to form a new dataset format of 100K review. An Example of 

the dataset after concatenated is shown in Table 3.3. 

Table 3.3 An example of the dataset after concatenated 

star_rating Review_headline + Review_body 

5 my daughter loved it and i liked the price and it came ... my daughter loved it and i liked 

the price and it came to me rather than shopping with a ton of people around me. 

Amazon is the Best way to shop! 

5 Five Stars  It was a birthday present for my grandson and he LOVES IT!! 

1 DONT BUY THESE! Do not buy these! They break very fast I spun then for 15 minutes 

and the end flew off don't waste your money. They are made from cheap plastic and have 

cracks in them.  

2 Two Stars , Cards are not as big as pictured. 

5 Five Stars  Great gift! 
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3.4.5 Text Cleaning 

The resultant CSV file was converted to a pandas data frame. The data frame was 

prepared for the data cleansing process. First, all punctuations and special characters 

were removed from the text. Then the English Stop words in computing which are 

words that are filtered out before or after processing natural language data (text), were 

removed from the corpus (Rajaraman & Ullman 2011) Typically, they are the 

common words like "a," "the," "and" an "of", which appear in the text of the customer 

review. All the corpus letters have been converted to lowercase letters. The cleaned 

data is uploaded to a new data frame and ready for the next stage. An example of a 

review after the text cleaning is shown in 

 

Figure 3.2  An Example of a customer review after text cleaning 

3.4.6 Data Classification Preparation 

The data cleansing process created a clean text corpus to be used in upstream and 

downstream tasks. The data frame created will then be passed in the tokenization 

process and sequence padding to ensure that all sentences have a similar length and 

then passed to the downstream task classifier. Table 3.4 shows the dataset number of 

characters before and after dataset cleaning.  The data was split into 75% for training 

and 25% for testing. A close number to the default configuration of MATLAB for 

data split into Machine Learning tasks by (Lanka et al. 2020) has been chosen for the 

research experiment. 
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Table 3.4 Statistic of the dataset 

Dataset  Number of characters 

Dataset before cleaning (Number of Characters) 48,639,420 

Dataset after cleaning (Number of Characters) 47,070,622 

Removed Characters  1,568,798 

3.5 AWS CLOUD ENVIRONMENT EXPERIMENTAL SETTINGS 

In this research, the AWS environment has been utilized first to process the data. The 

data pipeline is created, the models trained and then perform the hyperparameters 

tuning task along with the data analysis. The following section will explain in detail 

the AWS cloud environment, AWS S3 bucket, AWS SageMaker, AWS Glue and 

AWS Athena. The reason this study used AWS is that when using Google Colab, 

various problems were presented such as being out of memory and exceeding the 

GPU time limit. AWS was the optimal solution to run the experiment.  

3.5.1 What is AWS Cloud Environment? 

Amazon Web Service (AWS) is the world's leading and most commonly and 

compressive used cloud platform. It offers more than 200 features and services and 

operates throughout several data centres around the globe. AWS serves millions of 

customers ranging from the largest enterprise and government agencies to small start-

ups and researchers.  

3.5.2 AWS S3 Bucket 

Amazon Simple Storage Service (AWS 2020) is an object storage service. S3 buckets 

are one of the oldest services of AWS that offers an extensive range of features such 

as scalability, security, performance and data high availability.  

In this research, the Amazon Custom Reviews dataset was initially stored in 

the S3 Bucket. Using the S3 Bucket in this project was a must to copy the data from 

the original location to the staging area to start the pre-processing procedures and 

build the experiments. Also, S3 buckets have been used in all stages of development 

and training the models. This will be demonstrated later in the system architecture. 
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There are several classes in which the data based can be store on its frequency of 

access and data lifecycle.  

3.5.3 AWS SageMaker 

Amazon SageMaker (“Amazon SageMaker – Machine Learning – Amazon Web 

Services” n.d.) is a fully managed service provided by AWS. It is explicitly designed 

for data scientists and developers to build, train, and deploy machine learning models 

to have a high-performance platform and cost-effective solution. AWS SageMaker 

offers a scalable environment that allows the researchers and data scientists to build 

the right environment size and pay only for their requirements.  

In this research, AWS SageMaker was used to develop and build the models 

on SageMaker Notebook. Amazon SageMaker provides hosted Jupyter notebooks that 

are easily used to explore the data and visualization tasks. AWS SageMaker is enabled 

with direct connectors to AWS S3 buckets, allowing an easy way to access the data 

without using the local hard disks for storage or data processing.  

During the development phase, a small environment for a small dataset was 

built. This allows significantly low fees to be paid for small machines. During the 

training phase, the size of the machine is increased for the period of the training only. 

This makes AWS SageMaker a very efficient and cost-effective solution for 

researchers.  

3.5.4 AWS Glue 

AWS Glue (AWS Glue - Managed ETL Service - Amazon Web Services, n.d.) is a fully 

managed ETL (extract, transform, and load) service. What makes AWS Glue cost-

efficient is that it is pay-as-you-go. So, no need to pay an upfront cost to run the 

service. The dataset of Amazon Custom Reviews is provided in the S3 Bucket. Later 

how the data loaded to AWS Athena will be explained. This process required an ETL 

data pipeline that was built using AWS Glue.  
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3.5.5 AWS Athena  

Amazon Athena (Amazon 2020) is an interactive query service. The service is 

generally used to analyze the data that is stored in Amazon S3. Amazon Custom 

Reviews dataset is offered in Amazon S3 Bucket. Amazon Athena Is used to 

accessing the dataset and load it using the AWS Glue service into a standard SQL 

schema. Athena is a serverless service that AWS fully manages. There is no 

infrastructure to manage, and it is a pay-as-you-go service based on the queries that 

run only. The data is stored in Amazon S3 Buckets, and the results of all the queries 

are also stored in Amazon S3 Buckets. This means that while using Amazon Athena, 

getting a low price of the storage of S3 Bucket without the need to have upfront costs 

incurred by building a large database.  

3.6 THE HYPERPARAMETER TUNING OF WORD2VEC 

In the following section, word embedding design will be discussed, and the detailed 

methodology of how word embedding is used in the research. This will require a 

detailed analysis of the algorithm's structure and implementation. The Word2Vec 

internal mechanism is very important to understand the underlying hyperparameters 

that this research addresses. For example, the window size mechanism in the model is 

a very crucial hyperparameter that decides the architecture of the neural network. This 

will be explained in the coming section.  

Word2Vec is a learning algorithm to predict words from a given context. By 

providing a context, the network will be able to predict what is the most likely word 

that occurs in the context. This section explains in detail the technical implementation 

of the Word2Vec neural network. Word2Vec can always be explained as a simple 

input, output, and hidden layers. (Kimothi et al. 2020) illustrated that The size of the 

layer is dependent on the input and the output of each layer. For example, in Figure 

3.3 below W(VxN) is equal to the input size of (x), which is (V) multiplied by the size 

of the hidden layer (h), which is (X). The same goes for the W(NxV), where N is the 

size of the hidden layer (h) and (V) is the size of the output layer (y) which is (V).  
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Figure 3.3 Neural Network represents Word2Vec Neural Network 

Input layer: The input layer has one neuron for each and every unique word 

in the corpus. The input layer represents what is called One-hot representation. It is a 

very long vector "depending on the corpus" representing the index of a particular word 

in the corpus. All its values are zeros except for the bit representing the represented 

word, and it will turn into one. It is essential to know that the input layer of word 

embedding is only a vector and not a probability.  

Output layer: The neuron and words representing them appear in the input 

layer are the same as the output layer. The output vector is the expected vector to 

appear when the input vector is presented. So, for example, in Figure 1.3. the word x3 

and y1 appears next to each other in the corpus. So, if the input is set to the vector of 

x3, the output is the vector of y1. Vector of x3 means all neurons are zeros except the 

neuron that represents the word x3 and the same goes for the output vector of y1. The 

process starts with imposing the input of the x3 vector, setting random values for the 

weights for the hidden layer and checking the output vector and measuring the error 

by comparing the resultant vector and the target vector at the output layer. Then the 

error is propagated back to the network, and the weights matrices are adjusted in the 

hidden layers such that the output vector resembles the target vector. Then this 

operation is repeated for the entire training set till the highest accuracy is achieved. 
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Hidden layer: The hidden layer relies on the distributional hypothesis derived 

from the saying, "You shall know a word by the company it keeps" by Firth (1957). 

The hidden layer is a vector that represents a specific word in the corpus with specific 

numbers from -1 to 1. This hidden layer weight matrix size usually is hundreds 

(optimally from 100 to 300). When multiplying the input vector with the weight 

hidden vector, the output is the probability distribution of the given input word vector 

within its context. The word embedding is in the hidden layers of the weight matrix of 

Word2Vec.  

3.6.1 Implementation Example of Word2Vec 

The example mentioned above of simple two consecutive words in the corpus is a 

simplified example of the network design. The actual implementation of Word2Vec 

contains a training window. For example, in the sentence "This product is very 

reliable", The input layer will receive four different vectors V[This], V[product], 

V[very] and V[reliable], and the expected output should be V[is]. These settings 

ensemble the idea of predicting the word [is] based on the surrounding words with a 

window size of two words to the left and two words to the right. That is why the 

vector of [is] was not mentioned in the calculation  

3.6.2 Continuous Bag-Of-Words Vs Skip-Gram 

Continuous bag-of-words (CBOW): The input is a set of words, and the network task 

is to predict the most probable word that accompanies the input words. Continuous 

skip-gram will use a one-word vector to predict the accompanying words. CBOW is 

relatively faster than skip-gram. However, skip-gram is proven to be more accurate. 

Bornstein (2018) illustrates the architectural difference between the training methods 

in (Figure 3.4). This research explores both skip-gram and CBOW settings as a part of 

the hyperparameters navigations.  
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Figure 3.4 CBOW vs Skip-Ngram 

3.6.3 Word2Vec Similarity Feature 

One of the most famous outcomes of Word2Vec is the similarity function between 

two words or, to be specific, the similarity between two probability vectors 

representing two different words in their context window. There are several ways to 

calculate the similarity between two vectors, like Euclidean distance and cosine 

similarity. Word2Vec chooses to use the cosine similarity of two vectors which is the 

dot product of two vectors. Cosine similarity is the default function for similarity 

calculation in Gensim Library. The simplistic idea to visualize them is to measure the 

angle between two vectors in the vector space. The range of the cosine is from -1 to 1. 

Then it uses the SoftMax function to convert it to a probability that should be ranged 

from 0 to 1. The similarity feature is equivalent to the co-occurrence count matrix 

calculation.  

Several trained models exist and are available online for download. Google has 

trained 100 billion unlabelled words for Google news and availed the vector space for 

the download. This research trained the model from scratch using the existing dataset 

from Amazon Customer Reviews. The use of the pre-trained model would have biased 

the model to the hyperparameters used in the pre-trained model.  
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3.6.4 Word Embedding Visualization 

The distributed representation of word embedding is a relatively low dimensional 

vector space representing the meaning of the words in the corpus. The dimensionality 

is expected to be hundreds rather than thousands. This research navigates the 

dimension parameter from dimension size of 10 to 500. Visualizing hundreds of 

dimensions is an impossible task for 2D or even 3D diagrams. Principal component 

analysis (PCA) (Gorban et al., 2008) presents solutions to visually illustrate the vector 

space's dimensions. The diagram in Figure 3.5. illustrates the dimensionality of word 

embedding using a projector tool in the TensorFlow online library (Smilkov et al. 

2016). The visualization concept facilitates the understanding of the clustering of a 

word and its vectors. However, mathematically, it is impossible to extract exact 

meaning or use it for analogy identification due to the dimensionality reduction. 

 

Figure 3.5 TensorFlow data visualization of word embedding 

3.6.5 Word2Vec Hyperparameter  

Gensim is a Python library that is free and open source. It is generally used to 

represent documents as mathematical vectors that carry semantic meaning. It is 

designed to be computationally efficient and to reduce the development effort as much 

as possible. Gensim accepts unstructured raw text and uses an unsupervised neural 

network and machine learning algorithm to generate the semantic mathematical 

representation.  
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Gensim library is considered to be the earliest implementation of Word2Vec. 

The library is comprehensive and has been maintained over the years. The Gensim 

version of 4.0.1 is used, which is the latest version at the time of the experiment. The 

following section will explain and detail how trained and fine-tuned the 

hyperparameters of the Word2Vec model.  

The coming section explains the essential hyperparameters in the Word2Vec 

model in detail: the window size and the dimension size.  

a. Word2Vec Window Size 

The window size parameter is one of the most critical parameters in the Word2Vec 

algorithm. It defines how many words to the left and the right of the targeted word 

will be considered in the calculations. Figure 3.6 indicates the size of the window 

considering the target word "sat". If the window size is too small, like "1" only, then 

there is a 100% probability that the word "dog" appears next to the word "sat". 

However, if the window size changed to "2", then there will be a 50% probability that 

the word "dog" appears next to the word "sat". This probability will be equal to the 

probability that the word "fluffy" appears next to the word "sat". When more 

sentences are processed to calculate the space vector, the probability will change. So, 

the probability values mentioned here are for illustration of a single sentence only. 

When the window size increases "for example, to fifty", the context of the word 

increases, and the studied topic will become much wider. This will increase the 

attribute of the targeted words and include more entities to them. This can be helpful if 

the features of the words do not frequently appear too close to the targeted word. The 

bigger the window size, the less interchangeability of the target word, so when the 

window size decreases, it does better with interchangeability. When it increases, it 

does better with relatedness analogies.  
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Figure 3.6 Illustrates the window size of Word2Vec 

b. Word2Vec Dimension Size  

The dimension size parameter reflects on the size of the distributed representation, 

which is the hidden layer. Typically, the dimension size varies from one to three 

hundred. The bigger the dimension size, the easier it will be overfitted on the training 

set and bad performance on the test. Tuning this parameter requires high accuracy on 

the training set and low accuracy on the testing set. This means that the dimension size 

is too big, and reducing it might solve the overfitting problem of the model.  

The coming section will explain in detail all hyperparameters of Word2Vec 

models and how to navigate the hyperparameters space seeking the best combination 

for the downstream task. 

c. Hyperparameters Navigation 

Word2Vec algorithm implementation in the Gensim library is dependent on several 

hyperparameters. Each hyperparameter is used to have a technical or semantic impact 

on the generated vector space. In the coming section, list the hyperparameters of the 

Word2Vec Algorithm in the Gensim Python library:  

• Vector_size: Dimensionality of the word vectors. The dimension size of the 

vector can be seen as a compressed meaning of numbers that are relevant to 

each other. For example, in a well trained Word2Vec model, the vector of 

"man" will be close to the vector of "King". Similarly, the vector of "woman" 

will be close to the vector of "queen" in such a distance that the vectors of 
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"man" and "king" are closer. According to the original paper of (Mikolov et al. 

2013a), the best dimension size is 300. The dimension size is considered one 

of the essential hyperparameters. Ideally, when the dimension size increases, 

the vector representation will represent more information in-depth about each 

word. In contrast, the mathematical vector representation will be more abstract 

when the dimension size decreases and generalize more. For a visual 

representation, the standard method used is dimensionality reduction to reduce 

the dimensions to 3 or 2 dimensions presented in 2 or 3 dimensions diagrams.  

• Window_size: The window size is the sliding window that the model uses to 

slide on the corpus. As explained earlier, the increase of window size will 

result in a holistic understanding of the sentence together, which can be 

explained by relatedness. However, if the window size decreases, the vector 

representation will have more interchangeability analogies. The commonly 

known number of window sizes is 5.  

• Word2Vec_epochs: Number of iterations (epochs) over the corpus. (Formerly: 

iter). Ideally, when the number of epochs increases, the weight of the word 

embeddings will be more representative of the corpus.  

• Word2Vec_sg: #({0, 1}, optional) – Training algorithm: value equal to 1 for 

skip-gram; otherwise CBOW. The difference was explained earlier.  

• Word2Vec_hs: #({0, 1}, optional) – If value is 1, hierarchical softmax will be 

used for model training. Suppose the value is 0, and the negative is non-zero. 

In that case, negative sampling will be used 

• Word2Vec_negative: #negative (int, optional) – If more than 0, negative 

sampling will be used. The int for negative specifies how many "noise words" 

should be drawn (usually between 5-20). If set to 0, no negative sampling is 

used. Negative sampling enables the machine learning and neural networks 

only to modify a small percentage of the weights, rather than all of them for 

each training sample.  

• Word2Vec_ns_exponent = 0.75 #ns_exponent (float, optional) – The exponent 

used to shape the negative sampling distribution. A value of 1.0 samples 

exactly in proportion to the frequencies, 0.0 samples all words equally, while a 
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negative value samples low-frequency words more than high-frequency words. 

The original Word2Vec paper chose the popular default value of 0.75. 

• cbow_mean ({0, 1}, optional) If it is equal to 0, use the sum of the context 

word vectors. If it is equal to 1, use the mean, it only applies when CBOW is 

used. 

• hashfxn (function, optional) – Hash function to randomly initialize weights for 

increased training reproducibility. 

d. Random Search Hyperparameter  

In this experiment, an unconstrained random search algorithm was used to find the 

optimal combination of the hyperparameters and then test the optimal combination of 

those hyperparameters on the classification task.  

Gensim library was used to construct Word2Vec word vectors. Word vectors 

are created by performing an unconstrained hyperparameter search. The five most 

important Word2vec hyperparameters are the dimension size of the learned vectors 

with default value 100, the value of maximum sliding window size is 5, the negative 

sampling exponent value is 0.75, and the negative sampling number is equal to 5. 

A wide range for each hyperparameter has been initialized. A range starting 

from 10 up to 500 values as the Dimension size, values as the window size is from 1 

to 50, value as negative sampling exponent is 0.75, and negative sampling range from 

50 to 20. 

The total number of hyperparameter combinations based on the 

hyperparameters and their ranges will result in 2,352,000,000 combinations. Each 

hyperparameter combination will take a long time and due to the computational 

resource limitation present. One thousand different combinations for the 

hyperparameters have been randomly chosen from the total combination for this 

research. At the last stage, parameters that produce the best results are saved as the 

best hyperparameter set. The study of the impact of the change for a single 

hyperparameter is not the primary concern of this study. 
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3.7 CLASSIFICATION 

The second part of the experiment is the classification task. It takes the word 

embedding vector space as an input. Then train a deep neural network classifier on a 

downstream task classification task. The output accuracy is, of course, dependable on 

the DNN models. However, the aim is to find the discrepancy that might change the 

overall accuracy of changing the input word embedding layers.  

The word embedding vector space can be used as a simple classifier by itself. 

Mathematical vector aggregation is generally used to find an average vector that 

represents a sentence or a document. Comparing this average vector to multiple 

vectors that represent multiple classes usually succeeds in identifying the 

classification tasks. However, using a Deep Neural Network in concatenation with 

word embedding usually results in higher accuracy.  

In this experiment, the resultant word embeddings vector space was fed to 

several Deep Neural Networks such as (CNN), (RNN)and (LSTM). Then, the results 

of each accuracy are compared to identify the best hyperparameters combination for 

each model. Multiple methods of measuring the accuracy of the models were used, 

such as accuracy, precision, recall and F1 score for both testing and validation sets.  

3.7.1 Recurrent Neural Network parameters and layers 

This section describes the layers and the parameters used in Recurrent neural 

networks. 

The diagram below Figure 3.7 and Figure 3.8 illustrates the RNN parameters 

and layers.   

• The first layer is the embedding layer imported from the resultant vector space 

word embedding of Gensim Word2Vec in section one. Change in the 

dimension size will change the size of the embedding layer. 

• The second layer is the spatial dropout that usually helps promote 

independence between feature maps.  

Pus
at 

Sum
be

r 

FTSM



 

 

38 

• The third layer is the simple RNN layer.  

• The fourth layer is batch normalization, a technique for training very deep 

neural networks that standardizes the inputs to a layer for each mini-batch. 

This stabilizes the learning process and dramatically reduces the number of 

training epochs required to train deep networks. 

• The fifth layer is a dropout, which refers to ignoring units (i.e. neurons) during 

a specific set of neurons chosen at random during the training phase. 

• The sixth layer is a method of downsampling the whole feature map to a single 

value known as global max pooling. Setting the pool size to the size of the 

input feature map would achieve the same result. 

•  Two classes are represented by the seventh layer, which is a dense layer 

resulting in two neurons' output layers. 

 

 

Figure 3.7 Simple RNN module summary 
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Figure 3.8 Simple RNN module architecture 
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3.7.2 Convolutional Neural Network parameters and layers 

This section describes the layers and the parameters used in Convolutional neural 

networks. 

The diagram below in Figure 3.9 and Figure 3.10 illustrates the architecture of 

CNN.  

• The first layer is the embedding layer imported from the resultant vector space 

word embedding of Gensim Word2Vec in section one.  

• The second layer is the spatial dropout that usually helps promote 

independence between feature maps. 

• The third layer is the Convolution layer.  

• The fourth layer is batch normalization, a technique for training very deep 

neural networks that standardizes the inputs to a layer for each mini-batch. 

This stabilizes the learning process and dramatically reduces the number of 

training epochs required to train deep networks. 

• The fifth layer is a dropout, which refers to ignoring units (i.e. neurons) during 

a particular set of neurons chosen at random during the training phase. 

• The sixth layer is a method of down sampling the whole feature map to a 

single value known as global max pooling. Setting the pool size to the size of 

the input feature map would achieve the same result. 

•  Two classes are represented by the seventh layer, which is a dense layer 

resulting in two neurons' output layers. 
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Figure 3.9 Simple CNN module summary 
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